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Percolation transitions (PTs) of networks, leading to the formation of a macroscopic cluster, are

conventionally considered to be continuous transitions. However, a modified version of the classical

random graph model was introduced in which the growth of clusters was suppressed, and a PT occurs

explosively at a delayed transition point. Whether the explosive PT is indeed discontinuous or continuous

becomes controversial. Here, we show that the behavior of the explosive PT depends on detailed dynamic

rules. Thus, when dynamic rules are designed to suppress the growth of all clusters, the discontinuity of

the order parameter tends to a finite value as the system size increases, indicating that the explosive PT

could be discontinuous.
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Percolation transition (PT), i.e., the transition from a
disconnected state to a connected one, has been regarded
as a fundamental model of phase transitions in nonequi-
librium systems [1]. The concept of PT has been extended
to the formation of macroscopic clusters in network sci-
ence. A pioneering model of PT in network science is the
classical random graph model introduced by Erdős and
Rényi (ER) [2] in which a system composed of a fixed
number of vertices N evolves as edges are added. At each
evolution step, an edge is added between two vertices, that
are randomly selected from among unconnected pairs of
vertices. In this model, a quantity, called time, is defined as
the number of edges added to the system per node. The ER
model has been modified by following the so-called
Achlioptas process [3]. The Achlioptas process essentially
identifies the dynamics that prevent the creation of a given
target pattern by choosing one edge from a given number
of randomly selected potential edges. In the modified ER
model for the PT, the target pattern is a giant cluster. Thus,
an edge to be added to the system should be selected such
that the growth of clusters can be systematically sup-
pressed. The principle to take this selection rule is hereafter
referred to as the suppression principle (SP).

The dynamic rule originally designed by Achlioptas
et al. [3] is as follows: in the case of two randomly selected
edge candidates, the one actually added to the system is the
one minimizing the product or the sum of the sizes of the
clusters that are connected by each potential edge. The ER
models modified according to the product rule and the sum
rule are denoted as ERPR and ERSR models, respectively.
In these models, the giant-cluster size increases drastically
at the critical point, and therefore, the percolation transi-
tion is called explosive percolation. The introduction of an
explosive PT model has triggered intensive research on
discontinuous PTs in nonequilibrium systems [4–12].
Many models have followed the ERPR and ERSR models,
and they display similar transition patterns. Although the
explosive PTwas regarded as discontinuous in the original

paper [3], recently it has been argued that the transition is
continuous in the thermodynamic limit [13–17]. Thus, the
issue of whether the explosive PT is indeed discontinuous
or continuous remains controversial. In this Letter, we
describe the microscopic investigation of the dynamic
rules of several explosive percolation models and the sur-
prising finding that these rules do not satisfy the SP. Thus,
it is rather natural that the PTs of those models are con-
tinuous. However, some other variants of the Achlioptas
model satisfying the SP exhibit the pattern of discontinu-
ous PTs within the range of our numerical simulations.
Thus, we may state that satisfying the SP is essential for
discontinuous PTs in the evolution of complex networks.
To explain the dynamic rule, we classify the types of

edge candidate pairs as follows. (i) Both edge candidates e1
and e2 are intercluster edges. Clusters of sizes s

ðiÞ
1a and sðiÞ1b

are connected by the edge e1, and clusters of sizes sðiÞ2a and
sðiÞ2b are connected by the edge e2. In the following discus-

sion, we will use the following notation: PðiÞ
1 ¼ sðiÞ1as

ðiÞ
1b,

PðiÞ
2 ¼ sðiÞ2as

ðiÞ
2b, SðiÞ1 ¼ sðiÞ1a þ sðiÞ1b, and SðiÞ2 ¼ sðiÞ2a þ sðiÞ2b.

(ii) e1 is an intracluster edge in a cluster of size sðiiÞ1 , and

e2 is an intercluster edge between two clusters of sizes sðiiÞ2a

and sðiiÞ2b . We denote PðiiÞ
2 ¼ sðiiÞ2a s

ðiiÞ
2b and SðiiÞ2 ¼ sðiiÞ2a þ sðiiÞ2b .

(iii) Both e1 and e2 are intracluster edges in either the same
cluster or two different clusters. These three types of edge
candidate pairs are depicted in Fig. 1. On the basis of this
classification, we formulated several dynamic rules to
determine which edge should be added to the system.
Although the original model [3] seems to follow the

basic idea of the Achlioptas process, the dynamic rule
has to be more carefully examined. As time approaches
the percolation threshold, the mean cluster size increases,
and one or both potential edges have a greater possibility
of being intracluster as shown in Fig. 2(a). Thus, we have
to clarify how to formulate the dynamic rule when intra-
cluster edges are selected as potential edges. Here, we
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formulate dynamic rules for the cases (i)–(iii), and we
check whether each rule does follow the SP.

First, we introduce three different variants of the ERPR
model; these are specified in Table I. In model A, when one
edge is an intracluster edge [(ii) and (iii)], the product is the
square of the size of that cluster, while for case (i), it is the
product of the sizes of the two clusters connected by one
intercluster edge. This rule, however, can fail to follow the

Achlioptas SP. For example, when sðiiÞ1 ¼ 5, sðiiÞ2a ¼ 3, and

sðiiÞ2b ¼ 7 for case (ii), the edge e2 is selected in the ERPR-A
model, and then, the size of the created cluster is 10. On the
other hand, if edge e1 is selected, then none of the clusters
would increase in size. Therefore, model A does not follow
the SP. As the transition point is approached, intracluster
edges in (ii) and (iii) can be selected more frequently [see
Fig. 2(a)]. Actually, the behavior of the fraction of the
occurrences of (ii) or (iii) is similar to that of GðtÞ. Thus
the failure of the SP can be more frequent.

In the ERPR-B model, when potential edges of the type
(ii) are selected, the intracluster edge is definitely selected,
so that the cluster size does not increase. When the two
potential edges are both intracluster edges [type (iii)], one
of them is randomly selected. By this rule, time is ad-
vanced by one unit 1=N for the types (ii) and (iii).

Model C is a simplified version of models A and B. In
this model, the dynamics proceed via only intercluster
connections. Thus, two potential edges are both interclus-
ter edges [case (i)]. Model C may be regarded to be nearly
the same as model B because the clusters do not grow when
the intracluster edge is selected in (ii) and (iii). However,
the difference between them is that for types (ii) and (iii),
time is advanced in model B but not in model C.

For all models A, B, and C, the product rule has an
intrinsic drawback that the Achlioptas SP is unfulfilled. Let
us consider a simple example of two intercluster connec-

tions, in which sðiÞ1a ¼ 2, sðiÞ1b ¼ 7, sðiÞ2a ¼ 4, and sðiÞ2b ¼ 4.

Then, PðiÞ
1 ¼ 14 and PðiÞ

2 ¼ 16, and thus, edge e1 is added
to the system. However, the resulting cluster size is 9 in the
case, which is larger than the resulting size 8 when e2 is
added. In other words, even though the product of one pair
of cluster sizes is smaller than that of the other pair, its
sum can be larger. Thus, the Achlioptas SP is inherently

unfulfilled. Investigations [5,10,13,16] have shown that the
cluster size distribution displays a hump shape in the
region of large cluster sizes, and the hump size increases
up to the point where explosive cluster aggregations start.
Owing to the inherent drawback, such a case is likely to
occur frequently, as shown in Fig. 2(b). Thus, the PTs
under the product rule are continuous regardless of the
model type.
Next, we introduce similar models under the sum rule;

these are also listed in Table I. The drawback inherent to
the product rule is removed in the ERSR model. However,
for case (ii), the Achlioptas SP cannot be fulfilled in

FIG. 2 (color online). (a) The fractions of type (ii) and
type (iii) potential edges as a function of time t for different
system sizes: N=104 ¼ 32, 64, 128, and 256 from the top
(bottom) in the small-t (large-t) region. As N increases, the
fraction increases dramatically. Inset: For a given N ¼ 1:024�
107, the fractions of the type (i) (dotted line) and the types (ii)
and (iii) (solid lines) as a function of t. They are compared with
the giant-cluster size GNðtÞ (dashed line). The fraction of the
types (ii) or (iii) behaves similarly to GNðtÞ, indicating that
counting for the effect by taking the intracluster edges becomes
important as t approaches tc. (b) The fraction of the occurrences
in which the sum of the sizes of one pair of clusters becomes
larger than that of the size of the other pair, even though the
product of the sizes of the former is smaller than that of the sizes
of the latter. The dotted line represents GNðtÞ. Inset: Solid lines
represent the failure ratio on an enlarged scale for different
system sizes N=104 ¼ 32, 64, 128, and 256. For a larger system,
the curve lies on the upper position in the small-t region. The
dashed line represents GNðtÞ. Numerical data for (a) and (b) are
obtained from the ERPR-B model.

FIG. 1 (color online). Classification of types of edge candidate
pairs. (i) Both candidates e1 and e2 are intercluster edges. (ii) e1
is an intracluster edge and the other candidate e2 is an inter-
cluster edge. (iii) Both e1 and e2 are intracluster edges.
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model A, but it is always fulfilled in models B and C. Thus,
in the case of the sum rule, the models B and C are
regarded to be the ones following the Achlioptas SP. We
state that the PTs for models B and C are possible candi-
dates for the discontinuous PT.

Even though it is a challenging task to determine the
transition types of the explosive PTs with numerical simu-
lation data, the numerical approach is the only one pos-
sible, since there is no analytic solution that takes into
account all the aforementioned cases. Extensive numerical
simulations are carried out up to a system size N ¼ 1010

with a configuration average of about 1013=N. The ob-
tained numerical data may be sufficient for understanding
why this controversy has arisen, but a higher configuration
average may be required for determining the type of PT,
particularly when the system size is large.

We measure GNðtÞ as a function of time t for different
system sizes in the range N ¼ 20 � 104 � 220 � 104 at
every N ¼ 2� 104 step. For given N and 2N, we find a
point of intersection of the two curves GNðtÞ and G2NðtÞ.
The time and G components of such a point are denoted as
txð2NÞ and G2Nðtxð2NÞÞ, respectively. We compose a set of
ftxðNÞ; GNðtxðNÞÞg for the simulated system sizes. To
evaluate the discontinuity of the PT, we propose the fol-
lowing criteria: (a) The value ðtxðNÞ; GNðtxÞÞ remains finite
as N ! 1. The time txð1Þ is regarded as the transition
point tc in the thermodynamic limit. (b) The tangent of the
curve GNðtÞ with respect to t at txðNÞ diverges as N
increases.

Figures 3(a)–3(c) show the behaviors of GNðtxÞ as a
function of N for models A, B, and C, respectively, under
the product rule. The insets of each figure show GNðtÞ
versus t. We can see in (a) and (c) that for the model A
and C under the product rule, GNðtxÞ decreases with in-
creasing N in the whole considered range, suggesting that
GNðtcÞ ! 0 in the limit N ! 1. In the case of model B,
even though the data look flat up to N ’ 108, they decay in
the large-N region in the same manner as for model C.
Thus, the decay behavior can be considered to stem from
the intrinsic drawback of the product rule for the case (i). In
our previous study [10], we performed numerical simula-
tions for the model B under the product rule up to a system

size N ¼ 108. In that case, however, the decay behavior
was not noticed and the PTwas regarded as a discontinuous
transition. With the simulation data obtained in this study
for larger system sizes, we conclude that the three models
based on the product rule show continuous PTs.
Figures 3(d)–3(f) are the plots of GNðtxÞ versus N for

models A, B, and C under the sum rule. It can easily be
seen that for model A, the GNðtxÞ values decrease with
increasing N, suggesting that GNðtcÞ is zero in the limit
N ! 1. This indicates that the rule of doubling the cluster
size in the ERSR-A model violates the SP, and leads to a
continuous transition. However, for models B and C, the
data of theGNðtxÞ values look relatively flat asymptotically
within the large-N limit, even though the data points
beyond N ¼ 109 have large error bars owing to a smaller
number of configuration averages. Figure 3(g) shows the
tangent to the curve GNðtÞ at the crossing point as a
function of N. The data show that the tangent increases
according to a power law �N0:5. Thus, we may conclude
that the ERSR-B and ERSR-C models fulfill the SP and
seem to show discontinuous PTs, within the range of our
numerical data. However, we cannot rule out the possibility
that the value of GNðtxðNÞÞ decreases when the system
sizes are larger than those simulated in this work.
Recently, the authors [13] introduced a new type of

Achlioptas percolation model and argued that the explosive
PT is actually continuous. This model, called the CDGM
model following the initials of the authors, is defined as
follows. First, a pair of clusters, C1a and C1b, are randomly
selected and the smaller cluster (say C1a) is selected.
Second, another pair of clusters C2a and C2b are randomly
picked, and the smaller one (say C2a) is selected. Third,
two random nodes from each of the chosen clusters (C1a

and C2a) are selected and connected. There are four pos-
sible combinations of the connection. However, when ei-
ther of the two clusters from the first set is identical to
either of the two clusters from the second set [for example,
C1b and C2b in Fig. 4(a)], the CDGM model can fail to
follow the Achlioptas SP. According to the original rule of
the CDGM model, the two smaller clusters C1a and C2a

are connected, which creates a larger cluster size, whereas
the connection between two nodes inside the cluster

TABLE I. List of the dynamic rules under the product rule (the sum rule). The second column lists the type of potential edges. The
third and fourth columns list the conditions for the cases in which both e1 and e2 in Fig. 1 are selected. The last column shows the case
when either e1 or e2 is selected randomly.

Model Type e1 e2 Either e1 or e2 randomly

Type (i) PðiÞ
1 <PðiÞ

2 [SðiÞ1 < SðiÞ2 ] PðiÞ
1 >PðiÞ

2 [SðiÞ1 > SðiÞ2 ] PðiÞ
1 ¼ PðiÞ

2 [SðiÞ1 ¼ SðiÞ2 ]

Model A Type (ii) ðsðiiÞ1 Þ2 <PðiiÞ
2 [2sðiiÞ1 < SðiiÞ2 ] ðsðiiÞ1 Þ2 >PðiiÞ

2 [2sðiiÞ1 > SðiiÞ2 ] ðsðiiÞ1 Þ2 ¼ PðiiÞ
2 [2sðiiÞ1 ¼ SðiiÞ2 ]

Type (iii) Unconditional

Type (i) PðiÞ
1 <PðiÞ

2 [SðiÞ1 < SðiÞ2 ] PðiÞ
1 >PðiÞ

2 [SðiÞ1 > SðiÞ2 ] PðiÞ
1 ¼ PðiÞ

2 [SðiÞ1 ¼ SðiÞ2 ]

Model B Type (ii) Unconditional

Type (iii) Unconditional

Model C Type (i) PðiÞ
1 <PðiÞ

2 [SðiÞ1 < SðiÞ2 ] PðiÞ
1 >PðiÞ

2 [SðiÞ1 > SðiÞ2 ] PðiÞ
1 ¼ PðiÞ

2 [SðiÞ1 ¼ SðiÞ2 ]
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C1b ¼ C2b does not increase any cluster size in the system.
Therefore, the original CDGM model fails to follow the
Achlioptas SP by not taking into account the natural choice
of that intracluster edge. Again, as time approaches tc, the

selection of an intracluster edge becomes more frequent.
Thus, the selection of intercluster edges, which is against
the SP, can change the PT into a continuous transition. We
confirm this result by performing the following numerical

FIG. 3 (color online). GNðtxÞ versus N for the (a) ERPR-A, (b) ERPR-B, (c) ERPR-C, (d) ERSR-A, (e) ERSR-B, and (f) ERSR-C
models. The slopes of each guideline is (a) �0:06, (b) �0:05, (c) �0:05, (d) �0:02, (e) 0, and (f) 0. Thus, GNðtxÞ of ERSR-B and
ERSR-C converge to finite values in the thermodynamic limit. The error bars represent the deviation of the cross points. Each data set
is obtained by taking an average over about 1013=N configurations. GNðtxÞ of models B and C of both the ERPR and ERSR overlap in
the large-N region. The insets of (a)–(f) show the behaviors of GNðtÞ for different system sizes N=104 ¼ 32, 64, 128, 256, 512, 1024,
2048, 4096, 8192, and 16384. (g) Plot of the slope of GNðtÞ at tx versus N for the ERSR-B (h) and the ERSR-C (�) models.
dGNðtxÞ=dt increases according to a power law �N0:5.
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simulations. We plot GNðtxÞ versus N, and find GNðtxÞ �
N�0:03 for the CDGM model [Fig. 4(b)]. We then modify
the original model as follows: when one or two intracluster
edges are present among the four edge candidates, one of
these intracluster candidates is connected (model B) ran-
domly. In addition, we consider a model C in which the
four edge candidates are only allowed to be intercluster
edges. Figures 4(c) and 4(d) suggest that GNðtxÞ ap-
proaches a constant value in the large-N region for
models B and C, respectively. Moreover, we confirm that
the slope of GNðtÞ at tx diverges as N increases in a power
law manner. Based on these numerical results, it reveals
that the PT could be discontinuous even in the CDGM
model, when properly modified.

In summary, we have examined the dynamic rule of the
Achlioptas model in the perspective of the suppression
principle (SP). We found that when the dynamic rule
does follow the SP, the numerically calculated order

parameter seems to show the behavior of a discontinuous
transition. Otherwise, the PT seems to be continuous. The
original Achlioptas model and the CDGMmodel belong to
the latter case. An analytic study of the modified
Achlioptas models by taking into account the suppression
effect is therefore needed.
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FIG. 4 (color online). (a) Schematic illustration of the selec-
tion rule on the intracluster edge for the CDGM-B model. In the
original CDGM model (CDGM-A), when two pairs of edges e1
and e2 are selected from the cluster sets C1 and C2 of sizes s1a <
s1b and s2a < s2b, an additional edge connects the two nodes in
the clusters C1a and C2a (dotted line). In our modified model
(CDMA-B) the two nodes in the clusters C1b and C2b are
connected instead (solid line), because by choosing them, the
cluster sizes in the system do not increase. Panels (b)–(d) show
GNðtxÞ versus N for CDGM-A, CDGM-B, and CDGM-C mod-
els, respectively, and the slopes are�0:03, 0, and 0, respectively.
GNðtxÞ of the models B and C overlap in the large N region. It
may be reasonable to expect that the modified CDGM model
(CDGM-B and C) shows a discontinuous PT.
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