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Dynamics of the orientational roughening transition
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We use the renormalization-group method to study the dynamics of the sine-Gordon model for the
orientational roughening transition. Implications of our results for spatial and temporal behavior of sur-
faces are discussed.

I. INTRODUCTION

The problems of the static and dynamic behavior of
surface transitions have drawn much attention in recent
years. ' The roughening, wetting, and reconstruction
transitions occurring in the interfaces between crystals
and vacuums or between solids and Auids are typical ex-
amples of the surface phase transitions. The study of the
roughening transition was carried out through the
Coulomb gas model or the sine-Gordon model, and it
turned out that the roughening transition belongs to a
different universality class, the Kosterlitz-Thouless tran-
sition. The roughening transition arising both in the
Coulomb gas model and in the sine-Gordon model is
mainly caused by the two competing effects: the unbind-
ing effect caused by the surface tension energy and the
binding efFect caused by the lattice structure.

However, in tensionless surfaces like membranes and
amphiphilic films, the surface curvature energy plays a
much more important role than surface tension in surface
transitions. ' In this case, a surface undergoes two suc-
cessive roughening transitions. Upon increasing temper-
ature, the first transition occurs in which the surface be-
comes rough by losing the long-range transitional order,
but there still remains the quasi-long-range orientational
order. At the second transition occurring at the higher
temperature, the surface becomes completely rough by
losing the quasi-long-range orientational order. Thus this
transition is called the orientational roughening (OR)
transition, ' or the Laplacian roughening transition,
because the curvature energy is proportional to (V P) .
The OR transition was discovered by Nelson in the study
of the two-dimensional melting phenomenon. ' In the
original work, the OR transition was studied by introduc-
ing the vector Coulomb gas model, while the ordinary
roughening transition was studied by the scalar Coulomb
gas model. In the vector Coulomb gas model, the tilt-tilt
correlation of the surface height is understood via the
Coulomb interaction between electrical dipole moments,
while in the scalar Coulomb gas model, the height-height
correlation of the surface corresponds to the Coulomb in-
teraction between electrical charges.

On the other hand, very recently Levin and Dawson
developed the sine-Gordon model for the OR transition,
which is analogous to the sine-Gordon model for the or-
dinary roughening transition except for the surface
height by the surface normal. They studied the sine-

where P(r) means the height of the interface at position r
on the substrate and [ek] are the basis vectors of the tri-
angular lattice,

[et, I =(1,0), 2' 2 2' 2

These unit vectors satisfy the important rule that
e, +e2+e3=0, which shall be used later. The dynamic
equation from this static Hamiltonian can be obtained via
the Langevin equation

BP(r, t )

at
(3)

where il is the friction coefficient and R(r, t) is the
thermal random noise satisfying

(R„(t)R„(t')) =Gk5(t t') . — (4)

The solution of the Langevin equation, after a transient
period, produces the surface configurations which follow
the canonical distribution; the probability for a given
height profile P(r) is given by

P( [P(r)] ) —exp[ —(1/kT)&(P)] .

Using the Langevin equation (3), we shall derive the
dynamic equation for the OR transition, and the analysis
of it shall be performed by using the dynamic
renormalization-group method introduced by Nozieres
and Gallet. " This method is especially useful for study-
ing the sine-Gordon type model. We obtain the recursion

Gordon model through renormalization group (RG)
analysis, which produces the same recursion relations as
those derived from the vector Coulomb gas model. Thus
it is believed that the sine-Gordon model is equivalent to
the vector Coulomb gas model within the RG scheme. In
addition, the benefit of the sine-Gordon approach enables
us to study the dynamic property of the OR transition by
using the Langevin equation, but this study has not been
carried out yet. In this paper, we shall study the dynam-
ics of the OR transition.

The Hamiltonian of the sine-Gordon model for the OR
transition introduced by Levin and Dawson is written as

3

fd .r[V P(r)] +2y g f d r cos[ek VP(r)],
k=1
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relations of the dynamic RG transformation, which
reduce to the static ones in the limit of the sharp cutoff
and under the large-distance approximation. Thus we
can say that the equilibrium dynamics are conservative.
The reduction enables us to confirm that the dynamic
equation is correct. In the dynamic equation, the term
derived from the pinning potential is introduced in this
paper. This term should be helpful in understanding the
orientational order in the study of the epitaxial growth of
a crystalline film. It is found that the tilt-tilt correlation
function diverges logarithmically in space and time above
the OR transition temperature, which makes it likely that
the height-height correlation function diverges logarith-
mically in the roughening transition. "' This paper is
organized as follows: we shall first derive the dynamic
equation for the OR transition, and shall analyze it by us-
ing the dynamic renormalization-group technique in Sec.
II. Section III will be devoted to conclusions and discus-
sions.

II. THE DYNAMIC RENORMALIZATION-GROUP
ANALYSIS

Let us begin this section by deriving the dynamic equa-
tion of the OR transition. We first perform the integra-
tion by part of Eq. (1), and insert that into Eq. (3). Then
after redefining the coefficients, the dynamic equation is
obtained as

= —ll'V p —2y g (ek V) sin(ek Vp(r, t))(r, t) 4

k=l

+R(r, t),
where R satisfies the condition, Eq. (4). The dynamic
equation can be solved exactly when y =0. In this case,
it is straightforward to obtain the solution

p(r, t)= f dt'f d r'y0(r —r', t —t')R (r', t'), (7)

where g0 is the diffusion response function,

(r0, t) =— d k exp — +ik r1 2 ~kt
7l 7l

But the closed form of y0(r, t) cannot be obtained exactly
I

3= —ttV () —2y X (e„V)sin(es Vd))+R,
k=l

3= —lrV 5$—2y g (ek V) sin(ek VP)
k=1

(9a)

+5R,

3

X (es V) sin(es V()))
k=1

(9b)

where the bracket ( ) means the average over 5R. We
first solve for 5()I) by iterating and expanding in powers of
y. In the zeroth order, the solution is

5(td( '(r, t) = f d r' dt'y0(r r', t —t')5R (r—', t') . (10)

In the first order, the solution is

due to the non-Gaussian property of Eq. (8).
However, when y&0, an exact solution is not possible.

Thus we invoke the dynamic RG method to study the
time-dependent behavior. The dynamic RG analysis
shall follow a perturbative RG method introduced by
Nozieres and Gallet. Originally the method was applied
to the problem of the dynamics of the roughening transi-
tion, and the detailed calculations of it were presented.
Since the basic scheme of the RG calculations for the OR
transition is the same as that which appeared in the origi-
nal paper, we will present the essential steps of the dy-
namic RG transformations in this paper. First, we split
R into two parts, R =R+5R which are statistically in-
dependent. Here we may regard 5R as the effect of the
short wavelength, rapidly varying degrees of freedom left
out of the coarse-grained description. Thus we shall take
the average over 5R. For comparison, the standard dy-
namic RG transformation' is carried out by eliminating
fiuctuations in the momentum shell Ajb & k & A (with A
the momentum cutoff), while the current method is done
by doing the random force R(k). Accordingly, the noise
spectrum is readily divided into Gk =Gk+5Gk, contrib-
uted by R and 5R, respectively. Moreover, we obtain the
average height (t =(P(R+5R))&R by performing a par-
tial average over 5R, defining 5P—=P —()). Then the dy-
namic equations of P and 5((() are

3 3
5$'"= —2y Jdtr dt ys(r —r t —t') X'('e, '„V)s(n(8s V()+es.V5()) — X (es V)sin(es V((+es V5()))

k=1 k=1

Inserting 5/ =5(t)( )+5/" ' into Eq. (9a), we obtain the following equation, up to the order 6(y ):

= —RV P(r) —2y g (ek V) sin(ek VP)e "" ' + Y(y )+K(y )+R,() (r) 4 — 3 . —(I/2)sgkk(0, 0)

k = l

where

(12)

Y(y )= —2y ge " ' " '
(e, V, )f d r'dt'[(e; V, )(e V, )y0(r r', t —t')]—( 1 /2)5gtt'(0 0) ( 1 /2)6g ~ ~ (0 0)

and

X Isin[e, V,P(r, t)+e V,,P(r', t')](e " ' —1)I (13)
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X [sin[e, V,.p(r, t) e—V, P(r', t')](e " ' —1)] (14)

In order to derive the above equations, we have performed integration by part and have used the property
V,,go= —V,yo. In the above equations, the correlation function og; (p, r) is defined as

4
(e, q)(e q)e'~ ~

(1&)
4m K 4

where f (q) is a cutoff function and p=r r' and —r=t —t'. The second-order term F(y ) shall contribute to the renor-
malized correction by, and K(y ) shall do the same to b~ and bg later. The derivations of the renormalized correc-
tions are based on the Kadanoff's operator product expansion method, ' and are presented in Appendix A. After the
rescaling, A~(1 —e)A with A= 1 and p —+( I+a)p, the recursion relations of the RG transformation in the differential
form are

2 ——y+2y g f d pdr[(e; V)(e V)yo(p, r)]p ' ' exp —Vi(p, x)—
i (j dp

i+J= —k

C; CJ
lnp4' (16)

=2y g f d pdr[(e, .V ) yo(p, r)]p3
1

exp V;;(p,x)+ lnp (p n) (e, n)
4+K

(17)

1=2y g fd pdrr[(e; V ) go(p, r)]p' 'i exp V,;(p,x)+ lnp
4~K

where c is a positive function of K defined as

1 1ddq—
4~K q dq

(19)

dK 3 P d 4 & j4~
dE 2

'TTJ p p
dp

1
exp 3 + lnp

4wK

X Io(B)— I,(B)—1

and x is a dimensionless parameter, x =K~/gp, which
replaces ~. The derivation of the recursion relations ap-
pear in Appendix A. We note that this result is exact
within the second order of y.

The above recursion relations look much more compli-
cated than those obtained from the static Hamiltonian,
due to the differential kernel. But the recursion relations
Eqs. (16), (17) for the static variables y and v reduce to
those derived from the static Hamiltonian in the limit of
the sharp cutoff and under the large-distance approxima-
tion. The detailed derivation of it is presented in Appen-
dix B. Within those conditions, the recursion relations
for the static variables after performing the angular part
integration are

(21)

3'

dE 8nK
y+2~y Io(2), (22)

dK 3 2 1=—y Io(2) — I,(2)—
2 2

(23)

where c was defined in Eq. (19). Especially at the transi-
tion temperature K= 1/16m, the Aow equations become

2
2 p +2&+ dpp

dp

1 1X exp —A + lnp
2 8nK

XI,(B) (20)

Equations (20)—(23) are equivalent to the ones derived
from the static Hamiltonian.

So far we have derived the recursion relations and have
shown that the static variables reduce to the static case.
Thus the dynamics are conservative. The reduction im-
plies indirectly that the dynamic equation is correct. On
the other hand, the recursion relation for the dynamic
variable g remains complicated due to nonintegrability
over x. But it is obvious that Eq. (18) can be written sim-

ply as
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d lng~ =2y D(~),
dE

(24) = —~V"P —2y g (ek V)sin(ek VP(r, t))8 (r, t)

where D (~) is a positive function of ~. Thus as y ~0, the
friction coefficient q~0 undergoes the RG transforma-
tion.

+—(VP(r, t)) +R(r, t) . (27)

III. CONCLUSIONS AND DISCUSSIONS

We have derived the dynamic equation for the OR
transition from the static Hamiltonian via the Langevin
equation. In the static OR transition, the tilt-tilt correla-
tion function of the surface height is known to diverge as

G(r)—:([VP(r) —VP(0)] ) —lnr, (25)

where r is less than the correlation length g. The
correlation length diverges as in( —

~
T —T, ~

" with
v=0. 3696. The value of v is different from the value of
the ordinary roughening transition v=1/2. For the dy-
namics, we note that the recursion relations Eqs.
(22) —(24) have the familiar look of the sine-Gordon mod-
el for the roughening transition. The dynamic variable
goes to zero as y~0 above the OR transition point.
Thus the dynamics of the OR transition are convention-
al"' and the dynamic behavior of the OR transition is
similar to the roughening transition, which means that
the tilt-tilt correlation is logarithmically divergent in
space and time above the transition temperature,

In summary, we have derived the conservative dynam-
ic equation for the orientational roughening transition
through the Langevin equation from the sine-Gordon
Hamiltonian. In the dynamic equation, the term due to
"lattice pinning potential" has been introduced. This
term plays an important role in the OR transition in crys-
talline film. Through the dynamic RG transformation, it
is found that the dynamics are conventional and reduce
to the harmonic case above the OR transition point. The
tilt-tilt correlation function is logarithmically divergent
in space and time above the OR transition point, and the
characteristic time is proportional to the system size as L
is to L4.
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G (r, t) —= ( [VP(r, t) —VP(0, 0) ] ) —lnt (26)
APPENDIX A:

DERIVATIONS OF RECURSION RELATIONS

for t (r and it is saturated as G(r, t)-lnr for t ) r .
Below the transition temperature, it decays exponentially.

Recently there have been many studies in surface
growth, which are either conservative or nonconserva-
tive. ' Among them, many growth models have been in-
troduced to study the epitaxial growth of a crystalline
film. In those models, in order to consider the effect of
the surface diffusion of adatoms in the molecular beam
deposition, recently many authors' introduced dynamic
equations which commonly include V P. The growth
driven by V P has the orientational order. In this case,
we have shown in this paper that the relevant term
rejecting the lattice pinning potential is of the form

We begin with Y(y ) to derive the renormalized
correction Ay. Let us first consider the following replace-
ment as r ~r' and t ~t':

sin[e, VP(r, t)+e VP(r', t')].
~a (r r', t —t')sin(ek. VQ—(r, t) )

+ irrelevant part,

where the indices [i,j,k j are cyclic with e;+e~ = —ek.
The replacement is based on the Kadanoff's operator
product expansion, which yields

g(e„V)»n(e„VQ(r, t)) .
k

—v,"(p, ~)
a(p, r) =e (A2)

Thus it would be interesting to study nonlinear dynamic
equations including the Aux of the pinning potential
term, such as

where V, (p, r) was given in Eq. (19). Thus Y(y ) be-
comes

2 = 2
—(1/2)5g, , (0,0)—(1/2)gg . . (0,0)

Y(y ) =2y g g e " ' " '
(e; V, )sin(ek VP(r, t))

k i,j
I +g = —k

X f d'pdr[(e; V )(e, V )yo(p, r)](e " ' —l)e (A3)

Using the property e;+ej = —ek, we obtain



47 DYNAMICS OF THE ORIENTATIONAL ROUGHENING TRANSITION 5587

Thus

i (j
c+J = —k

X f d pdr[(e; V)(e .V)yo(p, r)](e " ' —1)e (A4)

(A5)

for the index k.
Next let us derive the renormalized corrections hy and b, rl from K (y ). To proceed, we again consider the following

replacement as p~O and v.~0:
sin[e;. VP(r, t) eJ.V~—Q(r', t')]~[e; V,P(r, t) e —V,.,P(r', t')]e " ' +irrelevant parts . (A6)

This derivation is also based on the KadanoiFs operator product expansion, which was presented in Refs. 9 and 14.
When i =j, we expand eJ.V„.Q(r', t') with respect to e;.V,P(r, t). Then EC (y ) becomes

K(y )=2y ge " ' f d pdr[(e;. V ) yo(p, r)](e " ' —l)e " ' (e;.V, ) (p V, )—P(r, t)
l

(A7)

The second part of Eq. (A6) was obtained after performing integrations by part twice. Thus b,a becomes

ha=2y ge " ' f d pdr[(e;. V) go(p, ~)](e " ' —1)e " ' —(p.n) (e; n) (AS)

where n=VQ(r, t)I~V/(r, t)~, and bg becomes

hr1=2y ge " fd 'pdrr[(e;. V ) yo(p, r)](e " ' —l)e " (A9)

Next, as the final step of the dynamic RG transformation, the variables are rescaled: k~(1 e)k,p~—(1+e)p Then it.
is easily known that 5g~ is of the order 8(e) Since 5g. is small, the exponential function of 5g can be expanded, and
then Eqs. (A5), (AS), and (A9) become much simpler. Furthermore, 5g;J has the following property when the parameter
~ is replaced by x =~~/gq:

e;.e, BV;,(p, x)

Then the recursion relations of the RG transformation in the differential form are

(A 10)

2 ——y+2y g f d pdr[(e; V)(e V.)yo(p, r)]p

i+I = —k

e;.ej
exp —V;.(p, x ) — lnp

4m-~
(Al 1)

=2y g f d pd [(er;.V ) yo(p, r)]p
l

exp V;;(p, x)+ lnp (p.n) (e;.n)
4m'

(A12)

1=2y g f d pdrrf(e; V ) yo(pr)]p' '~ " exp V„(px)+ Inp
4m'

(A13)

where c is a positive function of ~ defined as

1 1'
Gfq

4m+ q dq

APPENDIX B: THE REDUCTION TO THE
STATIC CASK

(A14)

First we will show that when the sharp cutofF
f (q)=8(1 —q) and the large-p approximation are used,

the diff'erential Green function, [(e; V)(e~.V)go(p, ~)],
becomes

d V~(p, x)
(e; V)(ej V)yo(p, ~)~,

gp 8x
(B1)

with x =~~/qp4.
The function V,"(p,x) can be rewritten with the func-

tions A (p, x ) and 8(p, x) as
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1
V; (p, x)= ——A(p, x)—2(e, .p)

1X(e p)B(p, x) B—(—p, x),

(B2)

Then the differential Green function is rewritten as

(e, V)(ej V)yo(p, r)

BB
Bx

where A and B are defined in Eqs. (22) and (23). But
when the sharp cutoff and the large-p approximation are
used, A and B become

+ (e,'0) e;.9 aA aB
Bx

(B5)

f dy [Jo(y)e ~ "—1 ]-
4m' o

B =— f dy J2(y)e
1 —4x 1

4m& o

(B3)

(B4)

where 0 is a unit vector perpendicular to p. Therefore,
Eq. (Bl) holds.

Plugging the result, Eq. (Bl), into Eq. (16), and per-
forming the integration over x, we obtain

y+2y g fd pp
' ' exp —V (p0)—

dp
i+j= —k

e; e
lnp

4~K
(B6)

Then performing the angular part integration yields Eq. (20). A similar manipulation is applied to Eq. (17), which gen-
erates Eq. (21).
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