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Abstract
The spectral densities of the weighted Laplacian, random walk and weighted adjacency matrices as-
sociated with a random complex network are studied using the replica method. The link weights are
parametrized by a weight expondght Explicit results are obtained for scale-free networks in the limit

of large mean degree after the thermodynamic limit, for arbitrary degree exponght and



In a network representation of complex systems, their constituent elements and interac-
tions between them are represented by nodes and links of a graph, respectively. Dynamical
and structural properties of such systems can be understood first by studying linear prob-
lems defined on the network. A linear problem on a graph is associated with a matrix and
the distribution of its eigenvalue spectrum is of interest. The real world networks are usually
modeled as a random graph. The spectral density, also called the density of states, is the
density of eigenvalues averaged over an appropriate ensemble of graph.

In this work, we study the spectral densities of several types of matrices associated with a
scale-free network which has a power-law tail in the distribution of the number of incoming
links to a node. The spectral densities in the thermodynamic limit are expressed in terms
of solutions of corresponding non-linear functional equations and are solved analytically in
the limit where the average incoming links per node is large. Implications of our results are

discussed.

I. INTRODUCTION

Many real world networks can be modeled as a scale-free network [1-3]. In the scale-free
network, the degred, the number of incident links to a node, is distributed with a power-law tail
decaying as- d—* with the degree exponehtoften in the rang@ < A < 3. Given such a network,
one can consider several types of matrices associated with linear problems on the network. Many
structural and dynamic properties of the network are then encoded in the eigenvalue spectra of
such matrices and hence the distributions of their eigenvalue spectra are of interest. Since each of
the real world networks may be viewed as a realization of certain random processes, the spectral
density or the density of states is studied theoretically by averaging them over an appropriate
ensemble.

One of such an ensemble is the static model [4, 5] which was motivated by its simulational
simplicity. Being uncorrelated in links, it allows easier analytical treatments than other growing
type models. Other closely related one is that of Chung and Lu [6]. Recently in [7], the replica
method is applied to study the spectral density of the adjacency matrix of scale-free networks
using the static model. The expression for the spectral density is derived in terms of a solution of
a non-linear functional equation which were solved in the dense graphgimaito, p being the

mean degree. The explicit solution shows that the spectral density decays as a power law with the



decay exponeria = 2\ — 1 confirming previous approximate derivations [8] and a rigorous result
on the Chung-Lu model [9].

In this paper, we extend [7] and study three other types of random matrices motivated from
linear problems on networks. They are the weighted Laplasiathe random walk matriRk and
the weighted adjacency matr respectively. We set up the non-linear functional equations for
each type of matrices and solve them in the dense graphpimito. For the random walk matrix,
we find its spectral density to follow the semi-circle law forallFor the weighted matrices, to be
specific, the weights of a link between nodesd j are given in the form of(d;)(d;))~P/2 where
(di) is the mean degree of nodever the ensemble. This form of weights is motivated by recent
works on complex networks [10-16]. Wh@n< 1, we find that the effect o on the spectral
density is to renormalizé to A= (A—B)/(1—B). The spectral density decays with a power
law with exponentsy — A and og = (25\ —1), for W andB, respectively for allh > 2. When
B =1, the spectral density d@ reduces to the semi-circle law, the same aR mhile that ofW is
bell-shaped. Whefd > 1, we find that the spectral densities\WwfandB show a power-law type
singular behavior near zero eigenvalue characterized by the spectral dimgnsiap/ (f —1).

This paper is organized as follows. In section 2, we generalize [7] in a form applicable to
other types of matrices and present general expressions for the spectral density function in terms
of the solution of non-linear functional equation. In sections 3, 4, and 5, we define and solve the
weighted Laplacian, the random walk matrix and the weighted adjacency matrix, respectively, in

the largep limit. In section 6, we summarize and discuss our results.

. GENERAL FORMALISM

We consider an ensemble of simple graphs Withodes characterized by the adjacency matrix

Awhose elements;; = Aji (i # ]) are independently distributed with probability
P(A;j) = fij8(A; — 1)+ (1— fij)(A;j) (1)

andA; = 0. The degree of a nodeis d;, = YA and(...) below denotes an average over the
ensemble.

In the static model of scale-free network [4]; is given as

fij = 1—exp(—pNRP;), (2)



whereP, 0i~/*=1 (A > 2) is the normalized weight of a nodle- 1, . . ., N, related to the expected
degree sequence &) = pNR, andp = 5;(d;) /N is the mean degree of the network. The degree
distribution follows the power law- d~*. The Erds-Renyi's (ER’s) classical random graph [17]
is recovered in the limik — o, whereP, = 1/N which is called the ER limit below. In the model
of Chung and Lu [6]/fi; is taken asfjj = pNRP; , with P, O (i +io) ~%*~Y. When2 < A < 3, ig
should beO(NG~1/2) to satisfy fi; < 1 introducing an artificial cut-off in the maximum degree.
In the following, we use the static model for ensemble averages but final results are the same for
the two models in the thermodynamic linht— oo.

Given a real symmetric matri® of sizeN associated with a graph, its spectral density, or the

density of stateq)g(l) is obtained from the formula

Polh) = rim 1oL, @

where
° [ [
Zq(u)z/_m <|T|dcn> eXp<§u|Z<ﬂ2—§§<nQucpj) (4)
with Imp — O0T. For a class of matrices considered in this wai,can be written in the form

:/Z (ndcn> exp(Zhi(tﬂ)+ZquV(<g,(pj)>_ (5)

i<

Then following [18] and [7] we arrive at the expression

PQ(H) a : iln/d“cpexp(g hi () + pNF.’gQ{cpa}), (6)

wherea=1,...,nis the replica index, the limit — Ois to be taken after, angh{@y } is a solution

of the non-linear functional integral equation

Z P J A" (exp(¥qV (G, Wa)) — 1) exp(¥qhi(Pa) + PNRYQ{Wa})
Jdpexp(S o hi(Wa) + PNROo{Wa}) '

The derivation is valid whefj = exp(5 4V (¢a, ®ja)) — 1 satisfies the factorization property, that

it} = (7)

is, when§; can be expanded into the form

S = Z&JOJ((ﬂlw--(ﬂn)OJ((lea---(Pjn)a (8)

whereJ denotes a term of the expansiag, and O; its coefficient and corresponding function,
respectively. A crucial step in this derivation is the usdaaf(1+ fj;Sj) ~ pNRP;S;. This
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introduces a relative error of O(N?>*logN) for 2 < A < 3 in both the static model and the
Chung-Lu model and is neglected in the thermodynamic limit [18, 19].

If V(@, ) has the rotational invariance in the replica space, we may look for the solution of
Jo{@} in the form ofgq(x) with x = 1/« @&. Then the angular integral can be evaluated and

then — O limit can be taken explicitly. The sums over nodes are converted to integrals using

%IZF(NF}):()\—l)/OluAZF (%%) du ©)

In the following sections, we apply this formalism to obtain formal expressions for the spectral
densities of several types of matrices and evaluate them explicitly in thepdngé. Whenpis
scaled to another variabkg, we use the conventiqng(E) = po(H) (du/dE) so thatf po(E)dE =

1.

. WEIGHTED LAPLACIAN

The weighted Laplaciaw considered in this section is defined as

didij — Ajj
v/ 4idj

whereA is the adjacency matrix artil= y ; Ajj is the degree of nodgandg; are arbitrary positive

W = (10)

constants. This is motivated by the linear problem of the type

%———ZA (¢ — @) = ZWIJ(PJ» (11)
whereV_Vij = (didij — Ajj)/qi. For example, in the context of the synchronization, the input signal
to a node from its neighbors may be scaled by a faq?o[rlz, 16], which may be approximated
as(d;)P [20] or to an average intensity of weighted networks [13]. Also the problem has relevance
to the Edward-Wilkinson process on network [18)V andW are similar to each other since

W = SV2W S1/2 with Sthe diagonal matrix with elemen& = q;. Eigenvalues o#V are positive

real with minimum at the trivial eigenvalue O.

Wheng; = 1 for all i, W reduces to the standard Laplaciadefined by

Lij = didij — Aj. (12)



In the literature, the Laplacian is sometimes defined by the normalized form

1 if i = j andd; # 0,
T.o_ ) 1 A
Lij = NGE if Aj =1, (13)
0 otherwise
We callR=1 — L the random walk matrix in this work and discuss it in the next section. We men-

tion here thaW is a weighted version of the Laplacian of unweighted graphs while the Laplacian

of weighted graphs would have been definedQy= (5« Ai/+/0i%k)dij — Aij/,/0id; [13, 14].
ForQ =W n (4), Zw(u) can be brought into the form (5) by a change of variaple /G,

with hy(@) = lZuq(p2 andV (@) = —12((p— P)2. Inserting these into (6) and (7), and evaluating
the angular integral, we obtain

pw (k) = %Rez Gi /Omyexp(lzuqyz+ PNRw(y))dy (14)
with

gw(x) = &2 -1
_xe ¥/2 Z R /O°° Ji(xy) eXp(lzuqyz - l2)’2 + PNRaw(y))dy, (15)

whereJ;(z) is the Bessel function of order one. In the ER limhtF, = 1) andg; = 1, (14) and (15)
reduce to equations (17) and (16) of [21], respectively.

The dense graph limjt — o is investigated by using the scaled funct®g (x) = pgw(X//P)-
Then in the limitp — oo, Gw(x) = —1x? and

1 O
P\N(H):m”ﬂZm (16)

for arbitraryq;. To be specific, we now set = (d;)? = (pNR)P at this stagep is arbitrary and is

called the weight exponent here. When the eigenvalue is scaled as
E=p" A -2F -1 Py, (17)

we find the spectral density in the dense graph limit as

A—1 1 PRt
pw =—Im | ————du. 18
(E) [ ; 1—u1*BEdu (18)

This shows qualitatively different behaviors in the three regiorfs of
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FIG. 1: (Color online) The spectral density of the weighted Laplacian for weight expfnredt(a),f =1
(b), andB > 1 (c). In (a) and (c), a typical curve is shown as a functiok efhile in (b), the spectral density

is shown as a function & = ,/p(E — 1) for several values of.

Hp<1
Eq. (18) is evaluated as
0 ifO<E<1,

o 19
Pw(E) (AHE-A-B/AP fE>1 -

Therefore, the spectra has a finite gagEirand a power-law tail with an exponeaty = (A —
B)/(1—PB). The only effect of3 here is to renormalizk to
~ A—B
A= ¢ (20)
Fig. 1(a) shows the graph ofy(E) for A = 3.
(i) p=1
The cas€d = 1 needs a special treatment. Whga 1, E = pandpw(E) = 8(E — 1). However,
if we expand the region ne&r= 1 by introducing a new variablg by E = ,/p(E — 1), we obtain
non-trivial values for finiteE. The method and result are similar to that treated in [21] for the ER

case. Following [21], the functiogy (X) in Eq. (15) is written in terms dfl (x), defined by
paw (P~ Y4x) = —i\/pé/2—x*/8+H(x). (21)

Then in the limitp — e, (15) givesH (x) = iy(E)x2/2 and (14) givesw (E) = Imy(E) /T, where
y(E) is the solution of

A=Y e ot W ~2du
Y= \/ﬁ/mdze /oE+v+z\/u()\—l)/()\—2)' 2)



Fig. 1(b) shows the graph gfy (E) for several values of.
(i) B> 1L
In this case, (18) is evaluated as

(AHEA-P/B-D jfo<E<1
pw(E)=1¢ P
{0 if E> 1.

(23)

Thuspw (E) is non-zero folO < E < 1 with a simple power. Such power-law dependence near the
zero eigenvalue gives arise a long-time relaxatioim*s with the spectral dimension [22—25]
A—1
As= ——. 24
ST p-1 (24)

Fig.1(c) shows the graph gfy(E) for As = 3.

IV. RANDOM WALK MATRIX

Consider a random walk problem defined as follows: When a random walker at & sexeisd,
neighbors, it jumps to one of them with equal probability. When a naslesolated so thad; = 0,
the random walker is supposed not to move. Then the transition probability fromi nodeis
given byRjj = A;j/d; if di # 0andR;j = &; if d; = 0. Rcan be brought into a symmetric form by
a similarity transformatiof® = TY/2RT-1/2, whereT is the diagonal matrix with elemenits = 1
whend; = 0 andT;; = d; whend; # 0. The resulting symmetric matrig, called the random walk
matrix here, is

1 if i =jandd; =0,
Rj = \/%—d, if Aj =1, (25)
0 otherwise.
Being similar,R andR have the same set of eigenvalues that are located within the pangé.

The isolated nodes integrate out of the partition funcéq(y) in (4), giving an additive term
nod(u— 1) in the spectral densityr(K) whereng is the density of isolated nodes. For the remaining
nodesRj = Ajj /\/Fdj and, after a change of varialfe— +/di@, Zr([) can be brought into the
form (5) withV (@, ) = izu(cp2+ W?) — i@y andh; (@) = —e@? with € — 0" to ensure convergences.
SinceA;j = 0 anyway for isolated nodes, the sums in (5) is extended to all nodes. Plugging this
into (6) and (7), we find

PR(K) = nod(M— 1)+ ERez R /O " Yor(y) exp(pPNRIgR(Y) — 1))y (26)
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with
gr(x) = €¥/2 X3 R / “hxy) exp('étl(xz +Y%) + PNRI[gR(y) — 1])d. (27)
T 0

Whenp — o, all nodes belong to the percolating giant cluster [5] agd@anishes. To obtain
the spectral density in the limfi — o, we scalgi= p~Y/2E andgr(x) = 1+ Gr(p¥*x)/p. Then
from (27), Gr(x) is determined aSr(x) = —ax?/2 with a being a solution o&2 +iEa—1=0

and from (26) pr(E) = Re(ta) L. This gives the semi-circle law for all

1 E2
E)==-4/1—— 28
Pr(E) = — 7 (28)
for |E| <2 and O otherwise.
V. WEIGHTED ADJACENCY MATRIX
In this section, we consider the weighted versioafefined by
Ai.
V4idj

whereq; are arbitrary positive constants. This is motivated by the weighted networks whose link
weights are product of quantities associated with the two nodes at each end of the link[10, 11].
Later on for explicit evaluations, we takg to beq = (d;)? = (pNR)P with arbitrary. When

B =0, we recoverA treated in [7] while wher = 1, Bjj = Ajj/+/(di)(d;) may be considered as

an approximation t& and is treated in [9]. With a change of varialge— ,/Gi@ in (4), Zg is of

the form (5) withh; (@) = izpqcp2 andV (@,p) = —i@y. Then we find

Pe(W) = %Rez Gi /0 myexp(lzuqyz+ PNRgg(y))dy (30)
with _

G6() =~ Y Py | X%() exp( 0¥ + PNRGs(y))cy )
for arbitraryq;.

Specializing to the case whege= (d;)? = (pNR)P, the limit p — o is investigated by scaling
pto E by
E=p 2 -2 -1 Py, (32)

andgg(x) = Gg(pY/*x)/p. ThenGg(x) = —Eb(E)x? and

p3(E) = ——Imb?(E) 33
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FIG. 2: (Color online) The spectral density of the weighted adjacency matrix with weight exdbreht

in (&) andp > 1in (b), for several values of effective degree exponér(ts) andAs (b), respectively.

with b(E) as the solution of
1 N2

E2b::(A——1)/‘ du. (34)

o ul-B—b
In the ER limit, we recover the semi-circle law regardlesgoffFor finite A, we consider three

regions off3 separately.

Hp<1
A change of integration variable in (34) leads to
A1 A-B.1\_ o
2F1(1,1_B,1_B,b>— b“E (35)

where 7F(1,c—1;c;2) = (c—1) foltc—z/(l—tz)dz is the hypergeometric function. Eq. (35) is

a generalization of [7] which is a special casg3ct 0. One notes that the effect @fis again to
renormalize\ to A = (A—B)/(1—B) and the results of [7] applies here when its degree exponent
is replaced by the effective one. In particular, the spectral density is symmetégc hias the
power-law tail~ |E|~°8 with an exponent

2\ —B—1

—_p_1=L"P=
OB 1_[3

(36)

and an analytic maximurﬁ\ — 1)/(5\T[) atE = 0. Fig. 2(a) shows the graph pg(E) for several
values ofA.

(i) =1

In this caseb in (34) is simply determined fronE?b = 1/(1 — b) and the spectral density

becomes the semi-circle law:
1 E?
E)=>-41/1— — 7
ps(E) - 7 (37)
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for |E| <2and O for|E| > 2 for all A. The same is proved in [9] for sufficiently large but finfie
while we have taken the limp — c. B at3 = 1 being an approximation dg, it is not surprising
to see the same results for the two cases.

(i) B> 1L

In this case, it is convenient to bring (34) into the form

As \ 1
E2 = ()\ jl) £ 2FL(LAs+ LAs+23b). (38)
S

with As = (A —1)/(B—1). The right hand-side of (38) as a function of réaiakes a minimum
valueEZ? at0 < b < 1 and increases to infinity ds— 0" orb — 1~. Thus for|E| > Ec, b(E) is
real andpg(E) = 0. As |E| decreases fror, pg(E) rises with a square root singularity since the
righthand side of (38) is analytic b¢. It is interesting to note that the behaviorgf(E) atE =0

is non-analytic. Whe < As < 1, it diverges as

A pman

while, for As > 1, its singular part is masked by the analytic part and it takes the finite maximum

value
1 As
Pe(0) = 15 =7 (40)
At As = 1, it diverges logarithmically:
1 1
E)~—log—. 41
ps(E) 9] (41)

Fig. 2(b) shows the graph pk(E) for several values ofs.

VI. SUMMARY AND DISCUSSION

In this work, we derived the spectral densities of three types of random matrices, the weighted
Laplacianw, the random walk matriR, and the weighted adjacency matBxof the static model
in the dense graph limit after the thermodynamic limit. Our results apply to the model of Chung-
Lu also. In fact, they apply to other models as londias (1) is a function ofpNRP; and satisfy
fij < pPNRP;.

With weights of the formg, = (d;)?, they show varying behaviors depending on the degree
exponentA and the weight exponefft The spectrum follows the semi-circle law fBr and at
the 3 = 1 point of B for all . The3 = 1 point of W is closely related td — B or | — R, but its
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spectral density is not of the semi-circle law but is bell-shaped. V@heri, the degree exponent

is renormalized ta given in (20) and the spectral density shows a power law decay with exponent
ow = A andog = 2\ — 1 for W andB, respectively. When the eigenvalue spectrum has a long
tail decaying as- p 9, the maximum eigenvalue of a finite system is expected to scaleNvith
aspn ~ N (-1 while the natural cutoff of degree in the scale-free networtig, ~ N/*-1),

The maximum eigenvalue of the weighted Lapladidmmay be taken a®; ~ d}ngﬁ forp<1

in the first order perturbation approximation. This simple argument explains the power of the tail
ow =A = (A—B)/(1—P) for W. A similar argument applied t(B?)11 ~ A gives the decay
exponenog = 2\ — 1 for B.

Whenf > 1, the spectral densities @ andB are non-zero within a finite interval of the scaled
eigenvalueE and are associated with the spectral dimenaipgiven in (24). FOW, it is a simply
power~ E*~1in 0 < E < 1, while for B, it is symmetric irE and singular alfE| = 0 with exponent
As— 1. They both diverge a& — 0when0 < Ag < 1.

When p is finite, the spectra is very complicated and is not well understood. For gnadll
least, one expects infinite number of delta peaks on the spectrum [26]. In the dense graph limit
p — o, those delta peaks have disappeared. Even though our explicit results are for the limit
p — oo, the limit is taken after the thermodynamics limit— co, and physically they would be a
good approximation fot < p < N in finite systems. In the synchronization problem on networks,
the eigenratidRk = iy /2 of W is of interest [27]. From (19), one may estimgge~ N(1-F)/(A-1)
andinR ~ i;f; InN for B < 1, assuming thalN-dependence gfi; is slower than the power law.
Similarly, from (23), one gethiR ~ f—j InN for B > 1. Suchp-dependence dRis corroborated
with numerical results for a similar matrix studied in [12].

The spectral properties of Laplacian on weighted netwdks+= (3 Bik)dij — Bjj or its nor-
malized versiorDj; = & — Bij//>«Bik Yk Bjk are also of interest[13, 14]. Unfortunately, the
formalism leading to (6) and (7) cannot be applied to these cases since the factorization property

(8) is not satisfied.
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