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Abstract

The spectral densities of the weighted Laplacian, random walk and weighted adjacency matrices as-

sociated with a random complex network are studied using the replica method. The link weights are

parametrized by a weight exponentβ. Explicit results are obtained for scale-free networks in the limit

of large mean degree after the thermodynamic limit, for arbitrary degree exponent andβ.
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In a network representation of complex systems, their constituent elements and interac-

tions between them are represented by nodes and links of a graph, respectively. Dynamical

and structural properties of such systems can be understood first by studying linear prob-

lems defined on the network. A linear problem on a graph is associated with a matrix and

the distribution of its eigenvalue spectrum is of interest. The real world networks are usually

modeled as a random graph. The spectral density, also called the density of states, is the

density of eigenvalues averaged over an appropriate ensemble of graph.

In this work, we study the spectral densities of several types of matrices associated with a

scale-free network which has a power-law tail in the distribution of the number of incoming

links to a node. The spectral densities in the thermodynamic limit are expressed in terms

of solutions of corresponding non-linear functional equations and are solved analytically in

the limit where the average incoming links per node is large. Implications of our results are

discussed.

I. INTRODUCTION

Many real world networks can be modeled as a scale-free network [1–3]. In the scale-free

network, the degreed, the number of incident links to a node, is distributed with a power-law tail

decaying as∼ d−λ with the degree exponentλ often in the range2< λ < 3. Given such a network,

one can consider several types of matrices associated with linear problems on the network. Many

structural and dynamic properties of the network are then encoded in the eigenvalue spectra of

such matrices and hence the distributions of their eigenvalue spectra are of interest. Since each of

the real world networks may be viewed as a realization of certain random processes, the spectral

density or the density of states is studied theoretically by averaging them over an appropriate

ensemble.

One of such an ensemble is the static model [4, 5] which was motivated by its simulational

simplicity. Being uncorrelated in links, it allows easier analytical treatments than other growing

type models. Other closely related one is that of Chung and Lu [6]. Recently in [7], the replica

method is applied to study the spectral density of the adjacency matrix of scale-free networks

using the static model. The expression for the spectral density is derived in terms of a solution of

a non-linear functional equation which were solved in the dense graph limitp→ ∞, p being the

mean degree. The explicit solution shows that the spectral density decays as a power law with the
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decay exponentσA = 2λ−1 confirming previous approximate derivations [8] and a rigorous result

on the Chung-Lu model [9].

In this paper, we extend [7] and study three other types of random matrices motivated from

linear problems on networks. They are the weighted LaplacianW, the random walk matrixR and

the weighted adjacency matrixB, respectively. We set up the non-linear functional equations for

each type of matrices and solve them in the dense graph limitp→∞. For the random walk matrix,

we find its spectral density to follow the semi-circle law for allλ. For the weighted matrices, to be

specific, the weights of a link between nodesi and j are given in the form of(〈di〉〈d j〉)−β/2 where

〈di〉 is the mean degree of nodei over the ensemble. This form of weights is motivated by recent

works on complex networks [10–16]. Whenβ < 1, we find that the effect ofβ on the spectral

density is to renormalizeλ to λ̃ = (λ− β)/(1− β). The spectral density decays with a power

law with exponentsσW = λ̃ andσB = (2λ̃−1), for W andB, respectively for all̃λ > 2. When

β = 1, the spectral density ofB reduces to the semi-circle law, the same as inR while that ofW is

bell-shaped. Whenβ > 1, we find that the spectral densities ofW andB show a power-law type

singular behavior near zero eigenvalue characterized by the spectral dimension(λ−1)/(β−1).

This paper is organized as follows. In section 2, we generalize [7] in a form applicable to

other types of matrices and present general expressions for the spectral density function in terms

of the solution of non-linear functional equation. In sections 3, 4, and 5, we define and solve the

weighted Laplacian, the random walk matrix and the weighted adjacency matrix, respectively, in

the largep limit. In section 6, we summarize and discuss our results.

II. GENERAL FORMALISM

We consider an ensemble of simple graphs withN nodes characterized by the adjacency matrix

A whose elementsAi j = A ji (i 6= j) are independently distributed with probability

P(Ai j ) = fi j δ(Ai j −1)+(1− fi j )δ(Ai j ) (1)

andAii = 0. The degree of a nodei is di = ∑ j Ai j and〈. . .〉 below denotes an average over the

ensemble.

In the static model of scale-free network [4],fi j is given as

fi j = 1−exp(−pNPiPj), (2)
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wherePi ∝ i−1/(λ−1) (λ > 2) is the normalized weight of a nodei = 1, . . . ,N, related to the expected

degree sequence as〈di〉= pNPi , andp = ∑i〈di〉/N is the mean degree of the network. The degree

distribution follows the power law∼ d−λ. The Erd̋os-Ŕenyi’s (ER’s) classical random graph [17]

is recovered in the limitλ→ ∞, wherePi = 1/N which is called the ER limit below. In the model

of Chung and Lu [6],fi j is taken asfi j = pNPiPj , with Pi ∝ (i + i0)−1/(λ−1). When2 < λ < 3, i0

should beO(N(3−λ)/2) to satisfy fi j < 1 introducing an artificial cut-off in the maximum degree.

In the following, we use the static model for ensemble averages but final results are the same for

the two models in the thermodynamic limitN→ ∞.

Given a real symmetric matrixQ of sizeN associated with a graph, its spectral density, or the

density of states,ρQ(µ) is obtained from the formula

ρQ(µ) =
2

Nπ
Im

∂〈logZQ(µ)〉
∂µ

, (3)

where

ZQ(µ) =
∫ ∞

−∞

(
∏

i
dφi

)
exp

(
i
2

µ∑
i

φ2
i −

i
2∑

i j
φiQi j φ j

)
(4)

with Imµ→ 0+. For a class of matrices considered in this work,ZQ can be written in the form

ZQ(µ) =
∫ ∞

−∞

(
∏

i
dφi

)
exp

(
∑
i

hi(φi)+ ∑
i< j

Ai jV(φi ,φ j)

)
. (5)

Then following [18] and [7] we arrive at the expression

ρQ(µ) =
2
nπ

Im
∂

∂µ
1
N

N

∑
i=1

ln
∫

dnφexp

(
∑
α

hi(φα)+ pNPi gQ{φα}
)

, (6)

whereα=1, . . . ,n is the replica index, the limitn→ 0 is to be taken after, andgQ{φα} is a solution

of the non-linear functional integral equation

gQ{φα}= ∑
i

Pi

∫
dnψ(exp(∑αV(φα,ψα))−1)exp(∑α hi(ψα)+ pNPi gQ{ψα})∫

dnψexp(∑α hi(ψα)+ pNPi gQ{ψα}) . (7)

The derivation is valid whenSi j = exp(∑αV(φiα,φ jα))−1 satisfies the factorization property, that

is, whenSi j can be expanded into the form

Si j = ∑
J

aJOJ(φi1, . . .φin)OJ(φ j1, . . .φ jn), (8)

whereJ denotes a term of the expansion,aJ andOJ its coefficient and corresponding function,

respectively. A crucial step in this derivation is the use oflog(1+ fi j Si j ) ≈ pNPiPjSi j . This
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introduces a relative error of≤ O(N2−λ logN) for 2 < λ < 3 in both the static model and the

Chung-Lu model and is neglected in the thermodynamic limit [18, 19].

If V(φ,ψ) has the rotational invariance in the replica space, we may look for the solution of

gQ{φα} in the form ofgQ(x) with x =
√

∑α φ2
α. Then the angular integral can be evaluated and

then→ 0 limit can be taken explicitly. The sums over nodes are converted to integrals using

1
N ∑

i
F(NPi) = (λ−1)

∫ 1

0
uλ−2F

(
(λ−2)
(λ−1)

1
u

)
du. (9)

In the following sections, we apply this formalism to obtain formal expressions for the spectral

densities of several types of matrices and evaluate them explicitly in the largep limit. Whenµ is

scaled to another variableE, we use the conventionρQ(E) = ρQ(µ)(dµ/dE) so that
∫

ρQ(E)dE =

1.

III. WEIGHTED LAPLACIAN

The weighted LaplacianW considered in this section is defined as

Wi j =
diδi j −Ai j√

qiq j
(10)

whereA is the adjacency matrix anddi = ∑ j Ai j is the degree of nodei, andqi are arbitrary positive

constants. This is motivated by the linear problem of the type

dφi

dt
=− 1

qi
∑

j
Ai j (φi−φ j) =−∑

j
Wi j φ j , (11)

whereWi j = (diδi j −Ai j )/qi . For example, in the context of the synchronization, the input signal

to a node from its neighbors may be scaled by a factordβ
i [12, 16], which may be approximated

as〈di〉β [20] or to an average intensity of weighted networks [13]. Also the problem has relevance

to the Edward-Wilkinson process on network [15].W andW are similar to each other since

W = S1/2WS−1/2 with Sthe diagonal matrix with elementsSii = qi . Eigenvalues ofW are positive

real with minimum at the trivial eigenvalue 0.

Whenqi = 1 for all i, W reduces to the standard LaplacianL defined by

Li j = diδi j −Ai j . (12)
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In the literature, the Laplacian is sometimes defined by the normalized form

Li j =





1 if i = j anddi 6= 0,

− 1√
did j

if Ai j = 1,

0 otherwise.

(13)

We callR≡ I−L the random walk matrix in this work and discuss it in the next section. We men-

tion here thatW is a weighted version of the Laplacian of unweighted graphs while the Laplacian

of weighted graphs would have been defined byCi j = (∑k Aik/
√

qiqk)δi j −Ai j /
√

qiq j [13, 14].

For Q = W in (4), ZW(µ) can be brought into the form (5) by a change of variableφ →√
qiφ,

with hi(φ) = i
2µqiφ2 andV(φ,ψ) = − i

2(φ−ψ)2. Inserting these into (6) and (7), and evaluating

the angular integral, we obtain

ρW(µ) =
1

πN
Re∑

i
qi

∫ ∞

0
yexp(

i
2

µqiy
2 + pNPi gW(y))dy (14)

with

gW(x) = e−ix2/2−1

−xe−ix2/2∑
i

Pi

∫ ∞

0
J1(xy)exp(

i
2

µqiy
2− i

2
y2 + pNPi gW(y))dy, (15)

whereJ1(z) is the Bessel function of order one. In the ER limit (NPi = 1) andqi = 1, (14) and (15)

reduce to equations (17) and (16) of [21], respectively.

The dense graph limitp→∞ is investigated by using the scaled functionGW(x) = pgW(x/
√

p).

Then in the limitp→ ∞, GW(x) =− i
2x2 and

ρW(µ) =
1

πN
Im∑

i

qi

pNPi−µqi
(16)

for arbitraryqi . To be specific, we now setqi = 〈di〉β = (pNPi)β at this stage.β is arbitrary and is

called the weight exponent here. When the eigenvalue is scaled as

E = pβ−1(λ−2)β−1(λ−1)1−βµ, (17)

we find the spectral density in the dense graph limit as

ρW(E) =
λ−1

π
Im

∫ 1

0

uλ−β−1

1−u1−βE
du. (18)

This shows qualitatively different behaviors in the three regions ofβ.
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FIG. 1: (Color online) The spectral density of the weighted Laplacian for weight exponentβ < 1 (a),β = 1

(b), andβ > 1 (c). In (a) and (c), a typical curve is shown as a function ofE while in (b), the spectral density

is shown as a function ofE =
√

p(E−1) for several values ofλ.

(i) β < 1:

Eq. (18) is evaluated as

ρW(E) =





0 if 0 < E < 1,

(λ−1
1−β)E−(λ−β)/(1−β) if E > 1.

(19)

Therefore, the spectra has a finite gap inE and a power-law tail with an exponentσW = (λ−
β)/(1−β). The only effect ofβ here is to renormalizeλ to

λ̃ =
λ−β
1−β

. (20)

Fig. 1(a) shows the graph ofρW(E) for λ̃ = 3.

(ii) β = 1:

The caseβ = 1 needs a special treatment. Whenβ = 1, E = µandρW(E) = δ(E−1). However,

if we expand the region nearE = 1 by introducing a new variableE by E =
√

p(E−1), we obtain

non-trivial values for finiteE. The method and result are similar to that treated in [21] for the ER

case. Following [21], the functiongW(x) in Eq. (15) is written in terms ofH(x), defined by

pgW(p−1/4x) =−i
√

px2/2−x4/8+H(x). (21)

Then in the limitp→ ∞, (15) givesH(x) = iγ(E)x2/2 and (14) givesρW(E) = Imγ(E)/π, where

γ(E) is the solution of

γ =−(λ−1)√
2π

∫ ∞

−∞
dze−z2/2

∫ 1

0

uλ−2du

E + γ+z
√

u(λ−1)/(λ−2)
. (22)
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Fig. 1(b) shows the graph ofρW(E) for several values ofλ.

(iii) β > 1:

In this case, (18) is evaluated as

ρW(E) =





(λ−1
β−1)E(λ−β)/(β−1) if 0 < E < 1

0 if E > 1.
(23)

ThusρW(E) is non-zero for0 < E < 1 with a simple power. Such power-law dependence near the

zero eigenvalue gives arise a long-time relaxation∼ t−λs with the spectral dimension [22–25]

λs =
λ−1
β−1

. (24)

Fig.1(c) shows the graph ofρW(E) for λs = 3.

IV. RANDOM WALK MATRIX

Consider a random walk problem defined as follows: When a random walker at a nodei seesdi

neighbors, it jumps to one of them with equal probability. When a nodei is isolated so thatdi = 0,

the random walker is supposed not to move. Then the transition probability from nodei to j is

given byRi j = Ai j /di if di 6= 0 andRi j = δi j if di = 0. R can be brought into a symmetric form by

a similarity transformationR= T1/2RT−1/2, whereT is the diagonal matrix with elementsTii = 1

whendi = 0 andTii = di whendi 6= 0. The resulting symmetric matrixR, called the random walk

matrix here, is

Ri j =





1 if i = j anddi = 0,

1√
did j

if Ai j = 1,

0 otherwise.

(25)

Being similar,R andR have the same set of eigenvalues that are located within the range|µ| ≤ 1.

The isolated nodes integrate out of the partition functionZR(µ) in (4), giving an additive term

n0δ(µ−1) in the spectral densityρR(µ) wheren0 is the density of isolated nodes. For the remaining

nodes,Ri j = Ai j /
√

did j and, after a change of variableφi →
√

diφi , ZR(µ) can be brought into the

form (5) withV(φ,ψ) = i
2µ(φ2+ψ2)− iφψ andhi(φ) =−εφ2 with ε→ 0+ to ensure convergences.

SinceAi j = 0 anyway for isolated nodes, the sums in (5) is extended to all nodes. Plugging this

into (6) and (7), we find

ρR(µ) = n0δ(µ−1)+
p
π

Re∑
i

Pi

∫ ∞

0
ygR(y)exp(pNPi [gR(y)−1])dy (26)
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with

gR(x) = eiµx2/2−x∑
i

Pi

∫ ∞

0
J1(xy)exp(

i
2

µ(x2 +y2)+ pNPi [gR(y)−1])dy. (27)

Whenp→ ∞, all nodes belong to the percolating giant cluster [5] andn0 vanishes. To obtain

the spectral density in the limitp→ ∞, we scaleµ= p−1/2E andgR(x) = 1+GR(p1/4x)/p. Then

from (27),GR(x) is determined asGR(x) = −ax2/2 with a being a solution ofa2 + iEa−1 = 0

and from (26),ρR(E) = Re(πa)−1. This gives the semi-circle law for allλ:

ρR(E) =
1
π

√
1− E2

4
(28)

for |E| ≤ 2 and 0 otherwise.

V. WEIGHTED ADJACENCY MATRIX

In this section, we consider the weighted version ofA defined by

Bi j =
Ai j√
qiq j

, (29)

whereqi are arbitrary positive constants. This is motivated by the weighted networks whose link

weights are product of quantities associated with the two nodes at each end of the link[10, 11].

Later on for explicit evaluations, we takeqi to beqi = 〈di〉β = (pNPi)β with arbitraryβ. When

β = 0, we recoverA treated in [7] while whenβ = 1, Bi j = Ai j /
√〈di〉〈d j〉 may be considered as

an approximation toR and is treated in [9]. With a change of variableφi →√
qiφi in (4), ZB is of

the form (5) withhi(φ) = i
2µqiφ2 andV(φ,ψ) =−iφψ. Then we find

ρB(µ) =
1

πN
Re∑

i
qi

∫ ∞

0
yexp(

i
2

µqiy
2 + pNPi gB(y))dy (30)

with

gB(x) =−∑
i

Pi

∫ ∞

0
xJ1(xy)exp(

i
2

µqiy
2 + pNPigB(y))dy (31)

for arbitraryqi .

Specializing to the case whereqi = 〈di〉β = (pNPi)β, the limit p→∞ is investigated by scaling

µ to E by

E = pβ− 1
2(λ−2)β−1(λ−1)1−βµ, (32)

andgB(x) = GB(p1/4x)/p. ThenGB(x) =− i
2Eb(E)x2 and

ρB(E) =−E
π

Imb2(E) (33)
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FIG. 2: (Color online) The spectral density of the weighted adjacency matrix with weight exponentβ < 1

in (a) andβ > 1 in (b), for several values of effective degree exponentsλ̃ (a) andλs (b), respectively.

with b(E) as the solution of

E2b = (λ−1)
∫ 1

0

uλ−2

u1−β−b
du. (34)

In the ER limit, we recover the semi-circle law regardless ofβ. For finite λ, we consider three

regions ofβ separately.

(i) β < 1:

A change of integration variable in (34) leads to

2F1

(
1,

λ−1
1−β

;
λ−β
1−β

;
1
b

)
=−b2E2 (35)

where 2F1(1,c−1;c;z) = (c−1)
∫ 1

0 tc−2/(1− tz)dz is the hypergeometric function. Eq. (35) is

a generalization of [7] which is a special case ofβ = 0. One notes that the effect ofβ is again to

renormalizeλ to λ̃ = (λ−β)/(1−β) and the results of [7] applies here when its degree exponent

is replaced by the effective one. In particular, the spectral density is symmetric inE, has the

power-law tail∼ |E|−σB with an exponent

σB = 2λ̃−1 =
2λ−β−1

1−β
(36)

and an analytic maximum(λ̃−1)/(λ̃π) at E = 0. Fig. 2(a) shows the graph ofρB(E) for several

values of̃λ.

(ii) β = 1:

In this case,b in (34) is simply determined fromE2b = 1/(1− b) and the spectral density

becomes the semi-circle law:

ρB(E) =
1
π

√
1− E2

4
(37)
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for |E| ≤ 2 and 0 for|E|> 2 for all λ. The same is proved in [9] for sufficiently large but finitep

while we have taken the limitp→ ∞. B at β = 1 being an approximation ofR, it is not surprising

to see the same results for the two cases.

(iii) β > 1:

In this case, it is convenient to bring (34) into the form

E2 =
(

λs

λs+1

)
1
b 2F1(1,λs+1;λs+2;b). (38)

with λs = (λ−1)/(β−1). The right hand-side of (38) as a function of realb takes a minimum

valueE2
c at 0 < bc < 1 and increases to infinity asb→ 0+ or b→ 1−. Thus for|E|> Ec, b(E) is

real andρB(E) = 0. As |E| decreases fromEc, ρB(E) rises with a square root singularity since the

righthand side of (38) is analytic atbc. It is interesting to note that the behavior ofρB(E) atE = 0

is non-analytic. When0 < λs < 1, it diverges as

ρB(E)∼ λs

2cos(π
2λs)

|E|−(1−λs) (39)

while, for λs > 1, its singular part is masked by the analytic part and it takes the finite maximum

value

ρB(0) =
1
π

λs

λs−1
. (40)

At λs = 1, it diverges logarithmically:

ρB(E)∼ 1
π

log
1
|E| . (41)

Fig. 2(b) shows the graph ofρB(E) for several values ofλs.

VI. SUMMARY AND DISCUSSION

In this work, we derived the spectral densities of three types of random matrices, the weighted

LaplacianW, the random walk matrixR, and the weighted adjacency matrixB, of the static model

in the dense graph limit after the thermodynamic limit. Our results apply to the model of Chung-

Lu also. In fact, they apply to other models as long asfi j in (1) is a function ofpNPiPj and satisfy

fi j ≤ pNPiPj .

With weights of the formqi = 〈di〉β, they show varying behaviors depending on the degree

exponentλ and the weight exponentβ. The spectrum follows the semi-circle law forR, and at

the β = 1 point of B for all λ. Theβ = 1 point of W is closely related toI −B or I −R, but its
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spectral density is not of the semi-circle law but is bell-shaped. Whenβ < 1, the degree exponent

is renormalized tõλ given in (20) and the spectral density shows a power law decay with exponent

σW = λ̃ andσB = 2λ̃− 1 for W andB, respectively. When the eigenvalue spectrum has a long

tail decaying as∼ µ−σ, the maximum eigenvalue of a finite system is expected to scale withN

asµN ∼ N1/(σ−1) while the natural cutoff of degree in the scale-free network isdmax∼ N1/(λ−1).

The maximum eigenvalue of the weighted LaplacianW may be taken asW11∼ d1−β
max for β < 1

in the first order perturbation approximation. This simple argument explains the power of the tail

σW = λ̃ = (λ−β)/(1−β) for W. A similar argument applied to(B2)11∼ d1−β
max gives the decay

exponentσB = 2λ̃−1 for B.

Whenβ > 1, the spectral densities ofW andB are non-zero within a finite interval of the scaled

eigenvalueE and are associated with the spectral dimensionλs given in (24). ForW, it is a simply

power∼Eλs−1 in 0< E < 1, while forB, it is symmetric inE and singular at|E|= 0 with exponent

λs−1. They both diverge asE→ 0 when0 < λs < 1.

When p is finite, the spectra is very complicated and is not well understood. For smallp at

least, one expects infinite number of delta peaks on the spectrum [26]. In the dense graph limit

p→ ∞, those delta peaks have disappeared. Even though our explicit results are for the limit

p→ ∞, the limit is taken after the thermodynamics limitN→ ∞, and physically they would be a

good approximation for1¿ p¿N in finite systems. In the synchronization problem on networks,

the eigenratioR= µN/µ2 of W is of interest [27]. From (19), one may estimateµN ∼N(1−β)/(λ−1)

andlnR∼ 1−β
λ−1 lnN for β < 1, assuming thatN-dependence ofµ2 is slower than the power law.

Similarly, from (23), one getslnR∼ β−1
λ−1 lnN for β > 1. Suchβ-dependence ofR is corroborated

with numerical results for a similar matrix studied in [12].

The spectral properties of Laplacian on weighted networks,Ci j = (∑k Bik)δi j −Bi j or its nor-

malized versionDi j = δi j −Bi j /
√

∑k Bik ∑k B jk are also of interest[13, 14]. Unfortunately, the

formalism leading to (6) and (7) cannot be applied to these cases since the factorization property

(8) is not satisfied.
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