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In network dismantling, a minimal set of nodes is identified whose removal breaks the network into small
components of subextensive size. Because finding the optimal set of nodes is an NP-hard problem, several heuristic
algorithms have been developed as alternative methods, for instance, the so-called belief propagation-based
decimation (BPD) algorithm and the collective influence (CI) algorithm. Here, we test the performance of these
algorithms and analyze them in terms of the fractality of the network. Networks are classified into two types: fractal
and nonfractal networks. Real-world examples include the World Wide Web and the Internet at the autonomous
system level, respectively. They have different ratios of long-range shortcuts to short-range ones. We find that the
BPD algorithm works more efficiently than the CI algorithm no matter whether a network is fractal or not. On the
other hand, the CI algorithm works better on nonfractal networks than on fractal networks. We construct diverse
fractal and nonfractal model networks by controlling parameters such as the degree exponent, shortcut number,
and system size and investigate how the performance of the two algorithms depends on structural features.
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I. INTRODUCTION

Network science concerns phenomena in systems of
multiple nodes interacting with each other through links. In
heterogeneous networks, whose nodes have various numbers of
connections and types of hierarchy, identification of influential
nodes is an important issue. If we know the characteristics of
nodes that play crucial roles in a specific dynamic process, then
we can control the process by modifying the connectivity of
the network. For instance, one may wonder how to identify su-
pertransmitters, who are likely to induce an epidemic outbreak
when they are infected. Once the supertransmitters are identi-
fied, the spread of disease can be suppressed by vaccinating or
quarantining them first. Because disease epidemics can spread
rapidly on networks and be fatal to humans, many studies have
been performed to identify supertransmitters using epidemic
models such as the susceptible-infected-recovered model
[1–6]. As in the prevention of epidemics, modification of a
network requires resources and time. Thus, optimization of
influence parameters by selecting an appropriate set of nodes is
essential when propagation processes need to be controlled on
complex networks. Node selection can be used in any attempt
to control the behavior of an entire network using limited
resources, such as viral marketing [7], political campaigns,
and military intelligence [8].

In optimal percolation, also called network dismantling, a
minimal set of nodes is identified whose removal breaks the gi-
ant connected component of a network into small components
of subextensive size. It can be mapped to optimal immunization
and the spreading problem [9]. Practically, optimal percolation
offers a general countermeasure against infectious disease,
no matter how contagious it is, where the size of the giant
component is an upper bound on epidemic outbreak [10].
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Optimal percolation is an NP-complete problem, like the other
optimal influence problems [11]. One cannot expect a deter-
ministic algorithm to work within polynomial-time complexity
unless the answer to the famous P-NP problem is proved
to be affirmative [12]. Instead, the solution can be chosen
from among the candidates by guessing and then checked
in polynomial time. Given a finite fraction as the number of
nodes to be removed, we can find the exact optimal percolation
set with the given size by checking every possible candidate.
However, as the system size increases, the number of cases
increases exponentially. Thus, to deal with large networks, we
need to develop a method to guess a good candidate solution
at a scalable time complexity.

As the first step, one can delete important nodes in turn,
using centrality measures such as the degree, eigenvector
centrality, or closeness centrality as a criterion for the impor-
tance [13]. For many graph instances, the performance can
be enhanced by recalculating the centrality measures after
each removal [14]. However, a centrality measure does not
guarantee the importance of a collection of nodes as a set, even
if each chosen node is important by itself. Even if we choose
a good centrality measure while trading off appropriately
between the scalability and accuracy, its effectiveness depends
heavily on the topology of the target network. Traditional
optimization methods such as the Monte Carlo method take
a very long time to approach the optimal value, and greedy
algorithms often give unreliable results [15].

As alternatives, several heuristic algorithms theoretically
based on belief propagation (BP) [16] have been proposed
recently, including those designed to find the dismantling set,
that is, the minimal set of nodes that can be removed to
break the giant connected component into small pieces of
subextensive size. In BP, global information is transmitted
by iteration of message-passing equations for local quantities.
This characteristic is appropriate for the optimal percolation
problem, where we should consider the global influence of
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node removal, although we have to keep the quantities local
because we need a scalable algorithm. In fact, most state-of-
the-art algorithms use a BP method based on the spin glass the-
ory in statistical physics and some characteristics described by
graph theory. The BP-based decimation (BPD) algorithm [17]
shows outstanding performance among heuristic algorithms
for most graph instances. The min-sum algorithm [18], the
performance of which is known to be comparable to that
of the BPD algorithm, is also based on BP. The collective
influence (CI) algorithm [9], one of the algorithms based on
centrality, also starts theoretically by considering the stability
of message-passing equations, although it is approximated to
use a centrality measure, the so-called CI. The three algorithms
mentioned above are very scalable and are known to work in
O(N log N ) time complexity.

The optimal percolation problem is deeply related to the
characteristics of loops. Many dismantling algorithms assume
that the network is locally treelike, that is, the number of
local loops is negligibly small. Under this assumption, it can
be shown that the minimal dismantling set coincides with
the minimal decycling set, that is, the minimal set of nodes
whose deletion leads to the removal of every loop in the
graph [18]. Those algorithms in Refs. [17,18] use this fact
as a first step in dismantling: First, remove loops from the
network, and then break down the remaining trees into small
pieces. Furthermore, the validity of the BP method relies on
the loop characteristics of the network. The BP method is
exact on tree graphs, and it gives a good approximation if
the correlation between neighbors of a node is sufficiently
small in the cavity graph [19]. This condition is realized if
there is no local loop, i.e., the network is locally treelike.
However, algorithms based on the BP method are reportedly
still effective on real-world networks that contain many local
loops [17,18,20].

The loop characteristics of networks have been categorized
quantitatively by the fractal scaling property [21]. Fractal scal-
ing represents the power-law relation between the minimum
number of boxes NB to cover the entire network and the
size of the boxes �B , NB (�B ) ∼ �

−dB

B , with a finite fractal
dimension dB [22]. It has been observed, however, that not
all networks are fractals, and most of the random network
models proposed to date are also not fractals. Here we aim
to characterize the effectiveness of dismantling algorithms on
loopy graphs in terms of the fractality of networks. We find that
the BPD algorithm works more efficiently on fractal networks
than on nonfractal networks, whereas the CI algorithm is better
on nonfractal networks. Moreover, the difference between the
performances of the two algorithms is smaller for nonfractal
networks than for fractal networks.

This paper is organized as follows. We show the disman-
tling performance of the BPD and CI algorithms on two
real-world networks, the World Wide Web and the Internet
at the autonomous level, in Sec. II. Similar work is per-
formed on model networks with various structural proper-
ties in Sec. III. The dependence of the performance on the
structural features is also discussed. In Sec. IV, we reproduce
the dismantling performance of the real-world networks by
controlling the structures of the model networks and discuss
the implications. The final section is devoted to summary and
discussion.

(a)

(b)

FIG. 1. (a) Performance of the BPD and CI algorithms on two
real-world networks. As a fraction q of nodes are deleted, the giant
component size is reduced by the fraction G/N , where N is the system
size. (b) Fractal scalings of the two real-world networks, the World
Wide Web and the Internet at the autonomous level, measured by
a random sequential box-covering method [27]. The Web follows
a fractal scaling and is regarded as fractal, whereas the Internet is
regarded as nonfractal.

II. PERFORMANCE ON REAL-WORLD FRACTAL
AND NONFRACTAL NETWORKS

Networks can be factored into a skeleton and shortcuts.
The skeleton is a spanning tree formed by the N − 1 links
with the highest betweenness centrality [23,24] or load [25],
and shortcuts connect different branches of the tree, forming
loops of various sizes. In particular, a skeleton formed by
the critical branching process, in which the mean number of
offspring is unity, seems to be required for a network to be
fractal [21,26]. If the shortcuts are local, then the fractality
of the skeleton is preserved, and the resulting network is still
fractal. If we add global shortcuts, then they deform the fractal
scaling behavior of the skeleton, and the network becomes
nonfractal. As the performance of BP-based algorithms relies
on the number of local and global loops, it is suggested
that the fractality affects the performance of dismantling
algorithms.

Figure 1 supports this suggestion, showing that the order
of the resilience of sample networks can be changed if one
uses different algorithms to obtain the optimal percolation
threshold. One of the sample networks is the World Wide
Web [28], which is considered to be an undirected network.
Two nodes are regarded as connected if there is a hyperlink
from one to the other. It is a scale-free network with degree
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exponent γ ≈ 2.6, and it appears to be fractal [21]. Another
sample is the Internet topology at the autonomous level as
collected in early 2010 [29]. It has a power-law degree dis-
tribution with degree exponent γ ≈ 2.1, and it is a nonfractal
network [21].

Although the BPD algorithm performed better on both
networks, the performance gap between the BPD and CI
algorithms is small on the Internet, which is nonfractal (Fig. 1).
However, the gap is large on the Web, which is fractal. It turns
out that the Internet is more vulnerable than the Web to the CI
algorithm; however, the Web is more fragile under the BPD
algorithm. As these two networks have many differences in
features such as system size, degree exponent, and fractality,
we need to identify the possible factors that affect the gap
between the performance of the two algorithms. We also
need to generate model networks with the desired topological
characteristics such as system size, degree distribution, and
fractality.

III. PERFORMANCE ON FRACTAL AND
NONFRACTAL MODEL NETWORKS

The fractal network model (FNM) introduced in Ref. [21]
can be used to construct model networks with desired loop
characteristics. First, we build a critical branching tree of
the desired size with N nodes and L = N − 1 links. The
degree distribution of the critical tree is controlled by the
probability bm of generating m offspring. For bm ∼ m−γ

with
∑

m mbm = 1, a critical branching tree with the degree
exponent γ is generated. Its fractal dimension is determined
as dB = (γ − 1)/(γ − 2) [21,26]. Then we add shortcuts to
the tree as follows. First, we add stubs to each node of the
critical tree, the number of which is proportional to the degree
of the node. The total number of stubs is given as 2sL,
where s is a control parameter. Next, we add sL shortcuts
between unconnected stubs at different nodes. To maintain
the fractal nature, we limit the hopping distance d between
nodes that are to be connected by a shortcut. This limitation is
required for local loops to conserve the global connectivity
and the fractality of the branching tree. A fractal network
can be deformed to a nonfractal network by rewiring the
fraction r of sL shortcuts without either limiting the distance
or changing the degree distribution. By rewiring links, local
shortcuts can be changed to long-range loops, which reduces
the network diameter or destroys distinct modules. As more
shortcuts are rewired, the network loses more of its modularity,
and the fractality is broken further, so the network becomes
nonfractal.

It is noteworthy that when the degree exponent of the
branching tree is close to 2, the network is more centralized
at the hub. Then the network becomes nonfractal even if the
shortcuts were added locally without the rewiring process
[Fig. 2(a)]. This is because the degree of hubs is so large
that the network connections are centralized at the hub, and
the diameter is easily reduced by connecting neighbors on
different hubs within the shortcut distance limitation. On the
other hand, as shown in Fig. 2(b), a critical branching tree
with a large-degree exponent (γ = 2.7) maintains its fractality
when local shortcuts are added, but it becomes nonfractal when
the shortcuts are rewired.
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FIG. 2. Fractal scaling behaviors of the fractal model net-
works measured by the so-called random sequential box-covering
method [27]. Networks (a) and (b) are generated on the basis of
critical branching trees with degree exponent γ = 2.1 and γ = 2.7,
respectively. On each skeleton, sL shortcuts are added within the
hopping distance d = 8, where s = 3.0, and N = L + 1 is the size of
the critical branching tree. The network size was set toN = 2.0 × 104.
Shortcuts were initially drawn locally (r = 0.0), and a fraction r of
those shortcuts were rewired randomly (r = 0.5, 1.0). For γ = 2.1,
the network is nonfractal even when shortcuts are not rewired. For
γ = 2.7, the network is fractal when shortcuts are added locally and
becomes nonfractal as the shortcuts are rewired.

For a given set of parameters such as the degree exponent
γ , shortcut parameter s, and rewiring ratio r , we generate 103

individual realizations and obtain the performance of the BPD
and CI algorithms on these realizations. Because the algorithms
were designed to thoroughly break the giant component into
subextensive (small) clusters, they provide good estimates of
each optimal value around G = 0 but can be incorrect far from
G = 0. We present the distributions of the optimal percolation
threshold as the proportion of deleted nodes needed to reduce
G to less than 1% of its original size, rather than showing
each curve from G/N = 1 to G/N = 0, which represents the
response of the network to the algorithm.

A. Dependence on shortcut rewiring ratio

To determine how the performance of each dismantling
algorithm depends on the fractality, we fix the parameters used
to construct the networks, such as the degree exponent γ and
shortcut parameter s, but control the shortcut rewiring ratio
r . Fractal networks are generated using γ = 2.7 and r = 0,
whereas nonfractal networks are generated using γ = 2.1 and
arbitrary r values.

We obtain the optimal percolation threshold of each fractal
model network using the BPD and CI algorithms. The distri-
butions of those thresholds using each algorithm are obtained
from different realizations for a given parameter set of the
network structure. As hypothesized, the fractality affects the
performance of each algorithm. For the model networks with
γ ≈ 2.1 (Fig. 3), the separation between the distributions is
unclear; thus, they overlap greatly, even though the BPD algo-
rithm looks slightly better than the CI algorithm for both r = 0
and r = 1. The ratio of the performance values of the BPD
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FIG. 3. (a) Performance comparison of the BPD and CI algo-
rithms on scale-free networks generated by the FNM with degree
exponent γ ≈ 2.1 for various shortcut rewiring ratios (r = 0.0, 1.0).
Each bar represents a fraction of qc, the optimal percolation threshold
found by the BPD or CI algorithm. (b) Distribution of the ratio
qc,BPD/qc,CI of each configuration. The ratio is that of the qc values
found by the BPD and CI algorithms on each graph generated by
the FNM. Distributions in both (a) and (b) were obtained from 103

realizations. The number of nodes in each model network ranges
between 2 × 104 and 2.2 × 104, and the shortcut density is set to
s = 3.0.

and CI algorithms, that is, qc,BPD/qc,CI, is measured for each
realization. Its distribution over different realizations is plotted
in Fig. 3(b). Here we notice that qc,CI is less than qc,BPD on every
single graph instance generated by the FNM. The superiority
of BPD over CI appears in every case observed throughout
this study. Both algorithms find that the fully rewired (r = 1)
networks are harder to destroy than the networks with only
local shortcuts (r = 0).

For the network with γ ≈ 2.7 (Fig. 4), the separation
between the distributions of qc for the BPD and CI algorithms
is clear, and those distributions do not overlap greatly. In
particular, the difference in performance is much larger for
the model networks with r = 0 (fractal) than for those with
r = 1 (nonfractal). As shown in Fig. 4(b), the distribution
of the ratio qc,BPD/qc,CI over different realizations is located
far from unity for r = 0 because the BPD and CI algorithms
perform very differently on fractal networks. The BPD algo-
rithm is especially effective on fractal networks. However,
it is close to unity for r = 1, implying that the BPD and
CI algorithms exhibit comparable performance on nonfractal
networks.
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FIG. 4. (a) Performance comparison of the BPD and CI algo-
rithms on scale-free networks generated by the FNM with degree
exponent γ ≈ 2.7 and various shortcut rewiring ratios (r = 0.0, 1.0).
Each bar represents a fraction of qc, the optimal percolation threshold
found by the BPD or CI algorithm, on the ensemble of networks
generated by the FNM with the specified shortcut rewiring ratio r .
(b) Distribution of the ratio qc,BPD/qc,CI of each configuration. The
ratio is that of the qc values found by the BPD and CI algorithms
on each graph generated by the FNM. Distributions in both (a) and
(b) were obtained from 103 realizations. The number of nodes in
each model network ranges between 2 × 104 and 2.2 × 104, and the
shortcut parameter is set to s = 3.0.

B. Dependence on degree distribution

The performance of dismantling algorithms also depends on
the degree distribution of networks. When the shortcut rewiring
ratio is fixed at r = 1, the model networks are nonfractal for
any choice of 2 � γ � 3. Thus, on the basis of the previous
results, we expect that the distributions of qc for the BPD and
CI algorithms are not widely separated. Figure 5(a) confirms
this expectation. For every choice of γ , the qc distributions
for the BPD and CI algorithms are not obviously separated.
Figure 5(b) also shows that the performance gap between
the BPD and CI algorithms is not large on nonfractal net-
works with various degree exponents γ . On the other hand,
the performance gap between these algorithms varies with
the degree exponent γ at r = 0 (Fig. 6). When γ = 2.1, the
two distributions overlap to some extent even at r = 0. As
γ is increased, the separation between the distributions of
qc,BPD and qc,CI increases. The reason is that a model network
possesses more obvious fractality at r = 0 for larger γ . As the
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FIG. 5. (a) Performance comparison of the BPD and CI algo-
rithms on scale-free networks generated by the FNM with shortcut
rewiring ratio r = 1.0 and various degree exponents (γ ≈ 2.1, 2.4,

and 2.7). Each bar represents a fraction of qc, the optimal percolation
threshold obtained by the BPD or CI algorithm, on the ensemble of
networks generated by the FNM with the specified degree exponent γ .
(b) Distribution of qc,BPD/qc,CI, the ratio of the qc values obtained by
the BPD and CI algorithms, on each realization generated by the FNM.
Distributions in both (a) and (b) were obtained from 103 realizations.
The number of nodes in each model network ranges between 2 × 104

and 2.2 × 104, and the shortcut parameter is set to s = 3.0.

fractality become more evident, so does the performance gap
between the algorithms.

C. Dependence on the system size

Even though the system sizes N are different, the
distributions of qc for each algorithm have similar shapes for
nonfractal networks (r = 1, γ ≈ 2.4) in Fig. 7. For fractal
networks (r = 0, γ ≈ 2.4), the BPD algorithm generates a
smaller qc for larger N (Fig. 8). The distribution of qc for the
CI algorithm remains almost unchanged compared to that of
the BPD algorithm. As a result, the performance gap becomes
larger when the two algorithms are applied on the fractal
network of a larger system. Because we know that the FNM
generates a network with more manifest fractality for larger N ,
this is consistent with the previous observation that the BPD
algorithm is more effective than the CI algorithm, especially
on fractal networks.
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FIG. 6. (a) Performance comparison of the BPD and CI algo-
rithms on scale-free networks generated by the FNM with shortcut
rewiring ratio r = 0.0 (not rewired) and various degree exponents
(γ ≈ 2.1, 2.4, and 2.7). Each bar represents a fraction of qc, the
optimal percolation threshold found by the BPD or CI algorithm, on
the ensemble of networks generated by the FNM with the specified
degree exponent γ . (b) Distribution of qc,BPD/qc,CI, the ratio of the
values qc found by the BPD and CI algorithms, on each realization
generated by the FNM. Distributions in both (a) and (b) were obtained
from 103 realizations. The number of nodes in each model network
ranges between 2 × 104 and 2.2 × 104, and the shortcut parameter is
set to s = 3.0.

IV. REPRODUCTION OF OPTIMAL PERCOLATION OF
REAL-WORLD NETWORKS FROM MODEL NETWORKS

In Sec. II, we observed a nontrivial phenomenon: The
BPD algorithm reveals that the Web is more vulnerable to
attack than the Internet, whereas the CI algorithm shows the
opposite [Fig. 1(a)]. Here we show that this phenomenon is
not a coincidence occurring on the particular pair of real-
world networks but rather a generic phenomenon. That is,
this phenomenon can be reproduced by any pair of networks
categorized as fractal and nonfractal networks with the same
degree distributions.

We first remark that the BPD and CI algorithms perform
very differently on fractal networks. This can be recognized
in Fig. 4(a) for the fractal case with r = 0 and γ = 2.7, in
which distributions A and B are widely separated. This large
separation can also be found in the Web among real-world
networks. Recall that the Web is a fractal network with the
degree exponent γ ≈ 2.6.
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FIG. 7. (a) Performance comparison of the BPD and CI algo-
rithms on scale-free networks generated by the FNM with shortcut
rewiring ratio r = 1.0 and degree exponent γ ≈ 2.4 for various total
numbers of nodes (N = 1.0 × 104, 2.0 × 104, and 4.0 × 104). Each
bar represents a fraction of qc, the optimal percolation threshold found
by the BPD or CI algorithm, on the ensemble of networks generated
by the FNM with the specified total node number N . (b) Distribution
of qc,BPD/qc,CI, the ratio of the qc values found by the BPD and CI
algorithms, on each realization generated by the FNM. Distributions
in both (a) and (b) were obtained from 103 realizations. Shortcut
parameter is set to s = 3.0.

Next, as we found in the previous section, the BPD and
CI algorithms show comparable performance on nonfractal
networks. The narrow separation between distributions C and
D in Fig. 4(a) for a nonfractal model network with r = 1.0
and γ = 2.7 represents similar performance. However, distri-
butions C and D are not sufficient to reflect the performance of
the algorithms on the Internet, because the positions of qc,BPD

and qc,CI on the Internet are located between those on the Web
[Fig. 1(a)], whereas the distributions of C and D are located
outside of the region of distribution B.

To reproduce the ordering of qc values obtained in Fig. 1(a),
we need to shift distributions C and D into the region between
distributions A and B. Recall that distributions C and D
were obtained on nonfractal model networks with γ ≈ 2.7,
whereas the Internet has γ ≈ 2.1. On the basis of the previous
result, we may guess that reducing the degree exponent γ

will move distributions C and D to the desired positions.
As shown in Fig. 5(a), the distributions of the CI and BPD
algorithms on nonfractal networks move to the left as the
degree exponent decreases. On the basis of this result, we set a
smaller degree exponent (γ ≈ 2.1) for the nonfractal network.
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FIG. 8. (a) Performance comparison of the BPD and CI algo-
rithms on scale-free networks generated by the FNM with shortcut
rewiring ratio r = 0.0 (not rewired) and degree exponent γ ≈ 2.4
for various total numbers of nodes (N = 1.0 × 104, 2.0 × 104, and
4.0 × 104). Each bar represents a fraction of qc, the optimal percola-
tion threshold found by the BPD or CI algorithm, on the ensemble of
networks generated by the FNM with the specified total node number
N . (b) Distribution of qc,BPD/qc,CI, the ratio of the qc values found by
the BPD and CI algorithms, on each realization generated by the FNM.
Distributions in both (a) and (b) were obtained from 103 realizations.
Shortcut parameter is set to s = 3.0.

Figure 9 is obtained using this setting. Distributions C′ and
D′ on nonfractal networks are located between distributions A
and B on fractal networks, successfully reproducing the desired
order of qc values on the Internet and the Web.

Thus, we conclude that if we have a pair of scale-free
networks—one a fractal network with sufficiently large degree
exponent γ and the other a nonfractal network with small
γ —and we dismantle them using the BPD and CI algorithms,
it is highly probable that the fractal network is more vulnerable
than the nonfractal network to attack by the BPD algorithm.
Conversely, the nonfractal network is more vulnerable than the
fractal network when the CI algorithm is used.

V. CONCLUSION AND DISCUSSION

We studied the dismantling behavior of two well-known
heuristic algorithms for the optimal percolation problem, the
CI and BPD algorithms. Both algorithms were developed
assuming that the target network is locally treelike. However,
many real-world networks contain short-range and long-range
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FIG. 9. Distributions of qc,BPD and qc,CI on fractal networks of
degree exponent γ ≈ 2.7 and nonfractal networks of degree exponent
γ ≈ 2.1. For both ensembles of fractal and nonfractal networks, 103

realizations were generated by the FNM with the shortcut parameter
s = 3.0 and rewiring ratio r = 1.0. Note that distributions A and B
are the same as A and B in Fig. 4, and C′ and D′ are the same as C′

and D′ in Fig. 3.

loops. It is interesting to consider how the performance of those
algorithms depends on the loop structure. Here we constructed
an FNM in which the loop structure is contained and controlled.
FNMs were generated using a critical branching tree to which
local shortcuts were added. Then those local shortcuts were
rewired randomly according to a shortcut rewiring parameter
r . When r = 0, the network contains only local shortcuts and
becomes fractal when the degree exponent is sufficiently large.
When r = 1, every shortcut is rewired randomly. The network
becomes nonfractal regardless of the degree exponent.

Overall, the BPD algorithm exhibited better performance
for both fractal and nonfractal networks. The performance
of the BPD algorithm was much better than that of the CI
algorithm on fractal networks; however, the algorithms are
comparable on nonfractal networks. Fractal networks contain
local community structures that are linked by sparse weak
ties. Intuitively, those communities can be easily separated
when the nodes on those weak ties are removed. The BPD
algorithm recognizes such target nodes efficiently; however,
the CI algorithm is less efficient in finding them (Fig. 4). On
the other hand, nonfractal networks are, in general, globally
entangled, and the two algorithms show similar performance.

The difference and similarity of the dismantling efficiency
on fractal and nonfractal networks, respectively, can also be
found in a pair of real-world networks, the Web and the Internet
(Fig. 1). They were regarded as a fractal and a nonfractal
network, respectively [21,22]. We revealed that for the Web,
there is a large difference between qc,BPD and qc,CI, whereas
for the Internet they are similar. They are ordered as follows:
Whereas the qc,BPD value of the Web is smaller than that of
the Internet, the qc,CI value of the Web is larger than that of
the Internet, as shown in Fig. 1. This implies that although the
Web is more vulnerable than the Internet to the BPD algorithm,
the Internet is more vulnerable to the CI algorithm. To explain
this phenomenon, we notice that the Web and the Internet have
different degree exponents, γ ≈ 2.6 and γ ≈ 2.1, respectively.
Because of the smaller degree exponent, the hub of the Internet

TABLE I. Dependence of the performance values qc,BPD and qc,CI

and their difference, � ≡ qc,CI − qc,BPD, on the system size N , degree
exponent γ , shortcut parameter s, and rewiring ratio r of the fractal
model network in the leftmost column. ↑ (↓, ∅) represents increasing
(decreasing, insensitive) behavior of each quantity in the top row as the
corresponding parameter in the leftmost column is increased, where
the other parameters are fixed.

qc,BPD qc,CI � = qc,CI − qc,BPD

N ↓ ↓ ↑ (r = 0)/ ∅(r = 1)
γ ↑ ↑ ↑ (r = 0)/ ↓ (r = 1)
s ↑ ↑ ↑ (r = 0)/ ↓ (r = 1)
r ↑ ↑ ↓

has a larger degree, making the network more fragile. However,
this fragility is not as great as that of the Web, which originates
from the fractality. Thus, the qc,BPD value of the Web is smaller
than any other qc value. We remark that qc,BPD and qc,CI on the
Internet are smaller than qc,CI on the Web. This phenomenon
was reproduced on a pair of model networks with fractality and
degree exponents similar to the Web and the Internet (Fig. 9).

Thus far, we have investigated the performance of fractal
model networks with a fixed shortcut parameter, s = 3. Here
we consider how the performance depends on the parameter
s. We first consider the case when r = 0, that is, there is no
link-rewiring process. As s is increased, the network becomes
more locally entangled. Then the difference between the
performance of the BPD and CI algorithms becomes larger,
because the CI algorithm does not work well on more entangled
networks. However, when r is large, the network becomes
less locally entangled by link rewirings, and the network
becomes nonfractal. Thus, the performance gap is small. As s

is increased, the gap becomes even smaller.
Finally, we summarize the dependence of the dismantling

performance on the structural properties of the fractal model
networks as a function of the system size N , degree exponent
γ , shortcut parameter s, and link-rewiring ratio r in Table I.
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APPENDIX A: COLLECTIVE INFLUENCE ALGORITHM

Although the CI algorithm [9] starts theoretically from
sophisticated considerations of local stability analysis of
message-passing equations, it provides a simple centrality
measure as a criterion for selection of nodes to be deleted.
Assuming that the network is locally treelike, the solution
with a vanishing giant connected component depends on the
largest eigenvalue of the modified nonbacktracking matrix. The
solution is stable only when the eigenvalue is less than unity,
whereas the eigenvalue drops abruptly from one to zero when
no loop remains. By using a perturbative method, the problem
is reduced to minimizing the cost function, which is defined as
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the sum of C (CI)
� (i) over all nodes, where

C (CI)
� (i) = (ki − 1)

∑

j∈∂Ball(i,�)

(kj − 1).

Here ∂Ball(i, �) represents the nodes on the surface of a ball
centered at node i with radius �. The CI algorithm repeatedly
removes the node with the largest CI value until the largest
connected component vanishes. The CI value of every node
is reevaluated after each removal. The algorithm outperforms
intuitive decimations based on traditional centrality measures
such as the degree or eigenvalue centrality, because it can
take into account the importance of weak nodes with small
degrees. Although the algorithm becomes exact as � → ∞
for an infinite treelike network, a small � still yields good
estimation for finite networks. Moreover, deleting a fixed
fraction of nodes with the largest CI values at once does not
affect the performance in typical cases, allowing the algorithm
to work in a time complexity of O(N log N ). In this study, the
CI algorithm uses C (CI)

�=2 (i) as its criterion because this value
is more effective than larger or smaller � for the prototypical
system size of the model networks used here. When we take
an excessively large � value, the computation time becomes
long and the performance is degraded, because the algorithm
performs only random deletion when � is equal to or larger
than the network diameter. A 0.1% portion of the nodes of the
original network were deleted at each step until the size G of
the giant component reached 1% of the number of nodes of the
original network.

APPENDIX B: BELIEF-PROPAGATION-GUIDED
DECIMATION ALGORITHM

The BPD algorithm [17] uses the minimum feedback vertex
set (mFVS) problem as an approach to the optimal percolation
problem. The mFVS problem is to find a minimal set of nodes
whose removal eliminates every loop. If we draw a subgraph on

the original graph by retaining only nodes that have one parent,
the subgraph consists only of simple loops and trees [30].
This rule is local, so it can be expressed by BP equations
involving the variables of neighboring nodes. The algorithm
evaluates the marginal empty probability qi

0 of each node at
each moment from the probabilities in the cavity graphs, which
are calculated by iteration of the BP equations. Definitions
of qi

0 and the BP equations can be found in Ref. [17]. The
node with the highest qi

0 is removed because removal of that
node is strongly recommended in order to draw a subgraph
without loops. Although the BP equations are not guaranteed
to converge to a fixed point on general graphs, the equations are
iterated a fixed number of times in this algorithm. In practice,
multiple nodes with the highest qi

0 are deleted together in one
step. After the evaluation of qi

0 and node removal, another cycle
of iteration and node removal is repeated until no loop remains.

The resultant tree components are broken into pieces by
removing additional nodes until no remaining connected com-
ponent is larger than expected. Because our purpose is to
decompose the giant component, small components with loops
can be allowed. Thus, among the deleted nodes, some nodes are
revived unless a large component emerges upon their revival.
The BPD algorithm reportedly outperforms the CI algorithm
on various types of models and real-world networks [17]. The
BPD algorithm is based on the spin glass model, where each
possible microscopic state can be realized with a probability
weighted by the number of remaining nodes multiplied by
the reweighting parameter X. In this study, the reweighting
parameter X is set to 12.0. When it is sufficiently large, it
does not affect the performance of the algorithm significantly,
even though the shape of the curve for each trial can vary
slightly. At each step, the BP equations are iterated, and 1%
of the remaining nodes are deleted. Then, the remaining tree
components are broken into pieces by deleting additional nodes
until the size G of the giant component reaches 1% of the
number of nodes in the original network.
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