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Disassortativity of random critical branching trees
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Random critical branching trees (CBTs) are generated by the multiplicative branching process, where the
branching number is determined stochastically, independent of the degree of their ancestor. Here we show
analytically that despite this stochastic independence, there exists the degree-degree correlation (DDC) in the
CBT and it is disassortative. Moreover, the skeletons of fractal networks, the maximum spanning trees formed
by the edge betweenness centrality, behave similarly to the CBT in the DDC. This analytic solution and
observation support the argument that the fractal scaling in complex networks originates from the disassorta-

tivity in the DDC.
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Recently, it was discovered [1] that many complex net-
works in real world are fractals, satisfying the fractal scaling:
the number of boxes Nyz(€) needed to cover an object scales
in a power-law manner with respect to the box-size €, i.e.,
Ny(€)~ €98, where dy is the fractal dimension. Examples
are the World Wide Web (WWW) [2], the protein interaction
network (PIN) of budding yeast [3], and the metabolic net-
works [4]. In contrast, the Internet [5] and many artificial
model networks such as the Barabdsi-Albert (BA) model [6],
the static model [7], etc., are not fractals. It was argued that
the fractal scaling originates from the disassortative correla-
tion between two neighboring degrees [8] or the repulsion
between hubs [9].

The origin of the fractal scaling has been understood from
another perspective [10,11]: a network is composed of the
skeleton, which is a special type of spanning tree formed by
edges with the highest betweenness centralities or loads, and
the remaining edges in the network that contribute to loop
formation. For fractal networks, it was shown that the skel-
etons exhibit fractal scaling similar to that of the original
network. The number of boxes needed to cover the original
network is almost the same as that needed to cover the skel-
eton. Moreover, when a skeleton is considered as a tree gen-
erated in a branching process starting from an arbitrary se-
lected root vertex, the mean branching number, the average
number of offsprings, exhibits a plateau, albeit fluctuating,
independent of the distance from the root. The value is close
to 1, and the skeleton was regarded as the critical branching
tree (CBT), which is known to be a fractal [12]. Thus, the
fractal scaling in the original network originates from the
presence of the fractal skeleton underneath the original net-
work.

The CBT is generated by the multiplicative branching
process. To generate a scale-free tree, n(>0) offsprings are
created at each branching step with the probability b,, which
is given as follows: b,=n"?/{(y—1) for n=1 and by=1
-2 b,, where {(x) is the Riemann zeta function. Then the
obtained branching tree is a scale-free network with degree-
exponent y. Since branching event is stochastically indepen-
dent, one may think that the CBT is random in the degree-
degree correlation (DDC); however, here we show that the
DDC is disassortative. We also show that the skeletons of the

1539-3755/2009/79(6)/067103(3)

067103-1

PACS number(s): 89.75.—k, 89.70.—a, 05.45.Df

fractal networks also exhibit the similar mixing pattern.
Therefore, the origin of the disassortativity of the fractal net-
works is rooted from the CBT nature of the skeleton.

Here, we calculate the two-point correlation function
P(k,k') for the CBT. P(k,k’) of an undirected network is
defined as the fraction of links with degrees k and £’ on both
ends. Even though the network under consideration is undi-
rected, for further discussion, we make it directed by assign-
ing arrows to each link in an arbitrary manner. Then we
count the number of links with degree k on the arrow’s
source side and k' on its sink side and call it N(k—k’). Next
reverse all arrows of the links and count the same and call it
M (k—k'). Each link contribute once in N(k— k') and M(k
—k’). Then

Nk —k')+Mk— k'
P(k,k') = ( );L ( ), (1)

where 2L=(k)N is twice of the link number. Note that
M(k—k')=N(k" — k). This way, a (3—1) link contributes to
the element P(1,3) once and P(3,1) once while a (2-2) link
contributes to P(2,2) twice. Since the sum is normalized by
2L, we have the general relation

kP (k)

® @)

> Plkk') =
k!

with P,(k) the degree distribution of the network. For uncor-
related networks only, P(k,k")=kP (k)k' P, (k')/{k)* [13].
Using above procedure, P(k,k’) for the CBT with
(ky=2 is obtained as follows: first, we consider a large
enough CBT so that we may neglect the boundary
effect. Assign arrows in the natural way following the
branching direction. Then N(k—k’) is the number of
degree k nodes [NP,(k)] times the number of offsprings
(k—1) times the probability that those offsprings has
degree k'. So, N(k—k')=NPy(k)(k—1)P,(k"). Similarly,
M(k—k")=NPyk')(k'=1)P,(k). So, we find
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FIG. 1. (Color online) Plot of {k,,)(k) as a function of degree k
for the CBT (O) and the skeletons of the fractal networks, the
WWW (J) and the yeast protein interaction network (A). Solid
lines represent the formula, Eq. (5). Inset: To visualize the 1/k
dependence, y(k)=[(k,,)(k)—a]l/b is plotted. Equation (5) predicts
y(k)=1/k, represented by the solid line. The numerical data fit this
form reasonably.

1
P(k,k") = E(k + k" =2)Py(k)Pyk'), (3)

which is different from the uncorrelated ones, counterintu-
itively.

The DDC manifests in the mean degree (k,,)(k) of the
nearest neighbors of a node with degree k [14]. Tt is related to
P(k,k') as

k' P(k,k")

(k) (k) = ; kP AE)” (4)

and is independent of k for uncorrelated networks. Plugging
the formula (3) into Eq. (4), we obtain that

(k> (RY(K?) = 2(k))
<knn>(k) = 7 + 2—]( .

(5)
(ky=2 for the CBT. Equation (5) may be rewritten in the
form, (k,)(k)=a+b/k, where a=(k)*/2 and b=[{k)((k*)
—2(k))]/2. Thus, {k,,)(k) is inversely proportional to degree
k for k<<b/a and thus, the CBT is disassortative.

We check this disassortative behavior numerically for the
CBT with y=2.5 averaged over 10 samples with size N
=10° and show it in Fig. 1. Indeed, the numerical data fit
well to the analytic result Eq. (5), represented by the solid
line in Fig. 1 and its inset. We note here that for y<<3, b/a is
large and scales with N as ~NG=?0-D_which we confirm
numerically.

Next we consider the skeletons of fractal scale-free net-
works. As discussed above, we argued they could be ap-
proximated as CBTs. To corroborate it, we also show in Fig.
1 (kpo)(k)’s of the skeletons of the WWW and the PIN and
compare them with Eq. (5) shown as solid lines where the
measured values of (k%) are used together with (k)=2. We
find the agreements quite good. Thus, these skeletons can be
regarded as having the same DDC as that of the CBT. On the
other hand, the skeletons of nonfractal networks show differ-
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FIG. 2. (Color online) Plot of {k,,)(k) as a function of degree k
for the skeletons of the nonfractal networks, the Internet at the AS
level (O), the static model with the degree-exponent y=2.4 (A),
and the BA model with the degree-exponent y=3.0 (OJ). Solid
(dashed) line is a guideline with slope —0.7 (-0.8).

ent behaviors. Although the Internet at the autonomous sys-
tem (AS) level exhibits a disassortative mixing pattern, the
decaying behavior of (k,,)(k) for its skeleton is different
from that of the CBT as shown in Fig. 2. It decays as
(k) (k) ~ k~°7. For an artificial model, e.g., the static model
with degree exponent y=2.4<3, (k,,)(k) of its skeleton de-
cays as ~k~% as shown in Fig. 2, different from ~k~! for
the CBT. For the BA model with degree-exponent y=3,
(kyn)(k) is random; however, for its skeleton, it is weakly
disassortative for intermediate range of k.

In summary, we have shown analytically and numerically
that the CBT is disassortative in the DDC. This is induced
topologically through the branching process. Its origin is
similar to what was proposed [15] and shown later [16] for
the Internet that the disassortative mixing pattern is caused
by the topological restriction that no pair of nodes is allowed
to have multiple connections in the ensemble of graphs with
given (or expected) degree sequences. In the CBT, such re-
striction arises among the offsprings of a same ancestor that
cannot be connected each other. An alternative interpretation
of the appearance of DDC in ensembles of random graphs
with restriction is proposed in [17] where the role of the
presence of one-degree nodes is emphasized. Here, we also
showed that the skeletons of fractal complex networks such
as the WWW and the PIN exhibit the same pattern in the
DDC as found in the CBT. This is yet another evidence that
the skeletons of the fractal networks can be regarded as the
CBTs besides the mean branching ratio being close to 1 in-
dependent of the distance from the root [10,11]. On the other
hand, the skeletons of the nonfractal networks show different
patterns in the DDC, even though they are disassortative.
The explicit formula (3) derived here can be used to study
various dynamic problems on fractal networks such as the
epidemic problem and so on.
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