
ARTICLE IN PRESS
Physica A 351 (2005) 671–679
0378-4371/$ -

doi:10.1016/j

�Correspo

E-mail ad
www.elsevier.com/locate/physa
Modelling hierarchical and modular complex
networks: division and independence

D.-H. Kima, G.J. Rodgersb, B. Kahnga,�, D. Kima

aSchool of Physics and Center for Theoretical Physics, Seoul National University NS50,

Seoul 151-747, Republic of Korea
bDepartment of Mathematical Sciences, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK

Received 6 June 2004

Available online 8 January 2005
Abstract

We introduce a growing network model which generates both modular and hierarchical

structure in a self-organized way. To this end, we modify the Barabási–Albert model into the

one evolving under the principles of division and independence as well as growth and

preferential attachment (PA). A newly added vertex chooses one of the modules composed of

existing vertices, and attaches edges to vertices belonging to that module following the PA

rule. When the module size reaches a proper size, the module is divided into two, and a new

module is created. The karate club network studied by Zachary is a simple version of the

current model. We find that the model can reproduce both modular and hierarchical

properties, characterized by the hierarchical clustering function of a vertex with degree k, CðkÞ;
being in good agreement with empirical measurements for real-world networks.

r 2005 Elsevier B.V. All rights reserved.
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Recently, considerable effort has been made to understand complex systems in
terms of random graphs, consisting of vertices and edges [1–5]. Such complex
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networks exhibit many interesting emerging patterns as follows: first, the degree
distribution follows a power-law, PðkÞ � k�g; where the degree is the number of
edges connecting to a given vertex [6]. Such networks, called scale-free (SF), are
ubiquitous in the real world. To illustrate such SF behavior in the degree
distribution, Barabási and Albert (BA) [6] introduced an in silico model: initially,
fully-connected m0 vertices exist in a system. At each time step, a vertex is newly
added and connects to m existing vertices, which are chosen with a probability
linearly proportional to the degree of target vertex. Such a selection rule is called the
preferential attachment (PA) rule.

Second, the degree–degree correlation in real-world networks is nontrivial.
The nontrivial behavior is measured in terms of the mixing coefficient r [7], a
Pearson correlation coefficient between the degrees of the two vertices on each
side of an edge. Complex networks can be classified according to the mixing
coefficient r into three types, having ro0; r � 0; and r40; called the disassor-
tative, the neutral, and the assortative network, respectively [7]. Such classifications
can also be identified by a quantity, denoted by hknniðkÞ; the average degree of a
neighboring vertex of a vertex with degree k [8]. For the assortative (disassortative)
network, hknniðkÞ increases (decreases) with increasing k, i.e., a power law hknniðkÞ �

k�n is satisfied where n is negative (positive) for the assortative (disassortative)
network [8].

Third, many real-world networks have modular structures within them. Modular
structures form geographically in the Internet [9], functionally in metabolic [10] or
protein interaction networks [11], or following social activities in social networks
[12,13]. Such modular structures are characterized in terms of the clustering
coefficient. Let Ci be the local clustering coefficient of a vertex i, defined as Ci ¼

2ei=kiðki � 1Þ; where ei is the number of edges present among the neighbors of vertex
i, out of its maximum possible number kiðki � 1Þ=2: The clustering coefficient, C, is
the average of Ci over all vertices. CðkÞ means the clustering function, the average of
Ci over the vertices with degree k. When a network is modular and hierarchical,
CðkÞ � k�b and C remains finite for large system size N [10,14]. In the BA model
with g ¼ 3; however, CðkÞ is independent of k, but decreases with N [2,14], because
the BA model does not contain modules.

In this paper, we are interested in modelling complex networks including both
modular and hierarchical structure not in a deterministic way, but in a self-organized
way. In real-world networks, modules represent communities which may evolve as
time passes and such modules form hierarchical structure. The karate club (KC)
network, originally proposed by Zachary [15], is a simple example of a real-world
social network containing community structure. Recently, Newman and Girvan [12]
studied the KC network to test their new algorithm for clustering communities
[12,16,17]. Here we notice that the KC network contains ingredients, division and
independence, which forms a modular structure, in addition to growth and PA
principles as noticed in the BA model. Thus, we introduce a network model evolving
by such rules, and perform numerical simulations for large system size. Indeed, we
find that the model exhibits a characteristic feature of both modular and hierarchical
structure, CðkÞ � k�1; as much as those for empirical data.
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To be specific, the main dynamic process of the evolution of the KC network is as
follows. In a KC, a disagreement develops between the administrator of the club and
the club’s instructor as time goes on, ultimately resulting in the instructor leaving
(division) and finding a new club (independence), accompanied by about half of the
original club’s members. This generic feature of division and independence can be
observed in many other social communities such as schools, companies, churches,
clubs, parties, etc.

It would be interesting to understand the mechanism for the formation of such
modular structures through an in silico model, which is our goal in this paper. Note
that Newman introduced simple analytic models generating modular structure with
a fixed number of vertices, which is based on bipartite graph [18,19]. Watts et al. [20]
introduced static social network models where individuals belong to groups that in
turn belong to groups of groups and so on, creating a tree-like hierarchical structure
of social organization. Our model is, however, a growth model, where the numbers
of vertices and modules increase with time.

To model the evolution of the KC network, we modify the BA model by assigning
a color to each vertex. The color assigned to each vertex indicates the group the
vertex belongs to. The dynamic rule of our model is as follows:

BA model (Growth and PA) Initially, there exist m0 vertices. They are fully
connected. Each vertex i is assigned the same index of color mi ¼ 1: Thus the total
number of distinct colors q ¼ 1: At each time step, a vertex is introduced and
connects to m existing vertices following the PA rule. To diversify the model, here m

is not fixed, but distributed uniformly among integers in the range ½1;mc
; where mc;
a control parameter, is taken as m0 for convenience. Note that the diversification of
m is taken to compare our model with the KC network later. The new vertex j is also
assigned the index of color mj ¼ 1 and this process is repeated until the number of
vertices reaches group size n1: Here n1 is not fixed again, but is chosen randomly
from the integers in the range ½1; nc
; where nc is another control parameter. This
process defines the first group q ¼ 1: Thus the model contains two control
parameters ðmc; ncÞ:

Division and independence Then we identify the two vertices i and j among the
group with the largest and the second largest degree, respectively, for division and
independence. Then the vertex j declares independence and changes its color to a new
one, i.e., mj ¼ q þ 1: Then, each remaining vertex kðai; jÞ in the group having the
same color as vertex i measures the distances dðk; iÞ and dðk; jÞ to the vertices i and j,
respectively. If dðk; iÞpdðk; jÞ; then the vertex k retains the index of color as it is;
otherwise, it changes its color index to that of j. Then the system now comprises of
q þ 1 different groups, and the range of the color index m is q0 ¼ q þ 1: We then
denote q0 simply by q. So the newest group has the new color q. The new module is
assigned a modular size nq; which is chosen randomly from the integers in ½1; nc
: It is
natural to suppose that module sizes are diverse in real-world networks. Also note
that if the module size is fixed, then we could not obtain the scale-free behavior of the
degree distribution.

Growth and PA again If q41; then a newly added vertex ‘ chooses one of q colors,
m; with equal probability, and m, the number of outgoing links, also randomly from
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the integers in ½1;mc
: Then m existing vertices are chosen in the group with the color
m following the PA rule, and m edges are inserted between them and the new node.
Note that when m exceeds the number of existing vertices in the selected module,
then the rest of the unconnected edges are ignored. When the size of the group m
reaches its own characteristic size nm assigned upon its birth in step (ii), we repeat
the step of division and independence (ii) in that group only. Otherwise, we repeat
step (iii).

We note that through the process of division and independence, hierarchical
ordering is made among modules in a self-organized way, because a part of vertices
in each module are still connected to vertices in its ancestor module. The hierarchical
and modular structure generate the behavior of CðkÞ � k�1:

The network constructed in this way is shown in Fig. 1 based on the same number
of vertices as the empirical data of the KC network. The structure of the model is
different from the BA model due to the presence of modular structure. Note that in
our model, one vertex may transfer from one group to another as time goes on, that
is, a vertex can change its color as it transfers to a new group. This characteristic is
different from that of the q-component static model proposed by the current authors
[21], where each individual belongs concurrently to q different groups such as high
school alumni, college alumni, company, etc. These two models may reflect different
aspects of our social community.

Based on the empirical data by Zachary, we obtain topological properties of the
KC network, which are listed in Table 1 and Fig. 2. Until now, it has been believed
that social networks are generally assortative [7,19]. But, in ‘‘division and
independence’’ social networks such as the KC network, each element is connected
to the other in a hierarchical way, without any mediator, generating a disassortative
network, as shown in Table 1 and Fig. 2. Since different colors represent distinct
Fig. 1. A snapshot of the model network with parameters N ¼ 34; mc ¼ 4 and nc ¼ 17; resembling the

karate club network proposed by Zachary. Here two groups are identified by () and (K).
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Table 1

Mean degree hki; the diameter d, the assortativity coefficient r, and the clustering coefficient C obtained

from Zachary’s KC network and from ours with parameter N ¼ 34; mc ¼ 4 and nc ¼ 17: The parameter

mc ¼ 4 was chosen to fit hki of our model network to the one of KC network. All the numerical values for

the model are averaged over ten configurations

Name N hki d r C

Zachary’s 34 4.59 2.41 �0.48 0.59

Ours 34 4.61 2.54 �0.19 (�0.22a) 0.56

aNote that Zachary presumed that the edge between the administrator and the instructor of the club no

longer exists upon division and independence. Following Zachary’s way, we obtain r ¼ �0:22 in our

model.
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Fig. 2. Plots of the cumulative degree distribution PcumðkÞ (a), hknniðkÞ (b), and the clustering coefficient

CðkÞ (c) versus degree k. In all, the empirical data and the data from the model are denoted by () and

(K), respectively. The parameters for the model network are the same as used in Fig. 1. Lines are drawn as
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modules [10,14] or communities [12], connections are very tight. Thus it is expected
that the clustering coefficient C is non-trivially large [18,19]. Table 1 shows the
disassortativity and the highly clustered nature of the KC network and our model.
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Agreements between the two are excellent except for the mixing coefficient r. Note
that the r value of the model is not close to zero although we used the BA-type
random attachment rule. Fig. 2 shows that the degree distribution, PðkÞ � k�2:7;
hknniðkÞ � k�0:5 and CðkÞ � k�1:0 of the KC network, which are also in good
agreement with those obtained from the present model network.

We investigated the topological properties of our model network for various mc

and nc with large system size N. For N ¼ 104; mc ¼ 4; and nc ¼ 100; the degree
distribution PðkÞ follows a power law with the exponent g � 2:4 in Fig. 3(a) and
hknniðkÞ shows a disassortative behavior with the exponent n � 0:8 in Fig. 3(b). The
exponents g and n depend on the parameter nc as tabulated in Table 2.

The behavior of CðkÞ is interesting. Fig. 4 shows the nc-dependence of the
hierarchical clustering function CðkÞ: For nc ¼ 10; 100; 500; and 1000 with N ¼ 104;
roughly speaking, CðkÞ is likely to be fit to � k�1; however, the data are more
scattered with increasing nc: When nc ¼ N; CðkÞ is almost independent of k, akin to
that of the BA model (Fig. 2(b) of Ref. [14]). Note that the behaviors of CðkÞ in Fig.
4 are reminiscent of those of the real-world networks studied in previous works. The
CðkÞ of nc ¼ 100; 500; and 1000 resemble those found in the actor network (Fig. 3(a)
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Fig. 3. Plots of the degree distribution PðkÞ (a) and hknniðkÞ (b) versus degree k, both obtained by

logarithmic binning method. The data in all figures are obtained with parameters N ¼ 10 000; mc ¼ 4 and

nc ¼ 100: In this case we obtain the mean degree hki ¼ 4:91; the diameter d ¼ 7:86; the assortativity

coefficient r ¼ �0:27; and the clustering coefficient C ¼ 0:46:

Table 2

The nc-dependence of the exponents, g; n; and b for N ¼ 104 and mc ¼ 4: The exponent values are obtained

by using both the cumulative and the logarithmic binning method

nc 100 500 1000 10000

g 2.4 2.5 2.7 2.9

n 0.8 1.2 1.6 0.0

b 1.0 1.0 1.0 0.0
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Fig. 4. The clustering coefficient CðkÞ versus degree k obtained with the parameters N ¼ 104; mc ¼ 4; and

nc ¼ 10 and 100 (a), 500 (b), nc ¼ 1000 (c) and 10 000 (d).
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of Ref. [14]), the internet autonomous system (Fig. 3(d) of Ref. [14]), and the world
wide web (WWW) (Fig. 3(c) of Ref. [14]), respectively.

Fig. 5 shows the mc-dependence of the hierarchical clustering function CðkÞ: When
mc is comparable to nc; CðkÞ is a constant for small k, while it decays as CðkÞ � k�1:0

for large k. The constant value is close to 1, because every vertex within a certain
module is almost fully connected. Our model can reproduce the modular and
hierarchical clustering structures of real-world networks qualitatively well by
controlling the two parameters mc and nc properly. As an example, the case of
m0 ¼ 10 and nc ¼ 200 of Fig. 5 shows plateau as well as scattered behavior in the
middle of the power law regime, which are very similar to the actor network (Fig.
3(a) of Ref. [14]). Note that we present the scattered data as they are in Figs. 4, and 5,
to compare them with those of the real networks presented in other previous works.

In conclusion, we have generalized the BA model by assigning a color to each
vertex for the purpose of modelling modular complex networks in a simple way. The
model evolves with time under the rule of division and independence, in a manner
reminiscent of the KC network. Through this model, we confirmed the behavior of
the hierarchical clustering function, which behaves in accordance with the ones
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obtained from the deterministic hierarchical structure and the empirical data such as
the internet, the WWW, the actor and language networks [14]. Also it was found that
our model exhibits an disassortative mixing behavior as observed in the KC network.
Finally, we suggest that the rule of division and independence could be used in
constructing modular complex networks in various fields, for example, bio-complex
networks, where the strong mutation of a gene may correspond to transferring from
one group to another [22].

This work is supported by the KOSEF Grant no. R14-2002-059-01000-0 in the
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