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Scaling behaviors of the voltage distribution in dielectric breakdown networks
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We study the distribution of voltage drops across bonds in dielectric breakdown networks and its qth moments
in the two-dimensional Euclidean space. Performing numerical simulations, we find that the distribution is
composed of three different power-law regimes which are distinguished by two crossover voltages V1 and V2.
The scaling behaviors of these crossover voltages with respect to the system size govern those of the qth moments
of the voltage distribution. This feature differs from the multifractal behavior of the qth moment in random resistor
networks. We discuss the implications of these scaling behaviors in relation to the application of the dielectric
breakdown network to memory devices.
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The percolation theory has played an important role
in studying transport phenomena in heterogeneous media
composed of conductors and insulators [1]. In ordinary
percolation systems, a cluster is formed statically in the
sense that randomly positioned conductors are connected
when they locate at the nearest neighbors, creating connected
(conducting) or disconnected (insulating) paths.

To understand transport properties in such a static percola-
tion system, a random resistor network model [2–6] has been
extensively studied, in which insulating and conducting bonds
are located randomly. For this network rich structural and
transport properties of the percolating cluster near percolation
threshold have been uncovered. Of particular interest is the
probability distribution n(V ) of voltage V in the percolating
cluster of the random resistor network and the qth moment of
voltage, Mq ≡ ∑

V N (V )V q , where N (V ) is the number of
bonds biased by a voltage V and N (V ) = M0n(V ) by defini-
tion. Note that some of these moments provide physical infor-
mation of the network [7–9]. The zeroth moment is the number
of bonds carrying a current, that is, the mass of the back-
bone; the second and the fourth moment describe the resistance
and the level of noise (or the third harmonic signal) of the
whole network, respectively. One central interesting feature
of the voltage distribution is its multiscaling or multifractal
properties [3–6,10,11]; a conventional scaling approach or
constant gap scaling law fails to describe the distribution,
instead infinite set of exponents are needed to characterize it
properly. In other words, the multifractality of the distribution
can be probed by nonlinearly q-dependent exponent with
respect to the system size L, that is, Mq ∼ L−p(q)/ν , where
p(q) is a nonlinear function of q.

On the other hand, a percolating cluster can be formed
dynamically by bond-switching mechanism between con-
ducting and insulating bonds. One typical example is the
dielectric breakdown network [12,13]. Opposite from the
fuse network [14,15], in the dielectric breakdown network an
insulating or a high resistive bond changes to a conducting or
a low resistive bond when voltage across the insulating bond
exceeds some threshold voltage vth. This “antifuse” switching
occurs iteratively, which eventually results in a percolating
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dielectric breakdown network. Recently, this dielectric break-
down network has attained much attention [13,16–19] due to
the potential application for the next nonvolatile high-density
random access memory. It is manifest that transport properties
of this type of memory depend on the voltage distribution,
which can be different from those of the static percolation
model created through random static processes. In spite of
such potential implications, the voltage distribution of the
dielectric breakdown network has not been studied yet. In
this Brief Report, we study the properties of the voltage dis-
tribution of the dielectric breakdown network using numerical
simulations.

We first explain how the dielectric breakdown network
is generated. We consider a resistor network as shown in
Fig. 1(a). Note that we used L × L square lattices for these
numerical simulations. Each bond can have either one of two
resistance values, rh or rl , where rh � rl . Let us assume that
the rh and rl bonds are in off-state (insulating) and on-state
(conducting), which are marked as thin (black) and thick (red)
lines, respectively. An initial insulating configuration is mostly
composed of off-state bonds, with a few on-state bonds with
small fraction pf as a defect. Here these defects give rise
to random fluctuations of the voltage distribution, which is
indispensable for generating a localized dielectric breakdown
network. The top and bottom edges are connected to bus bars
on which external voltage Vext is applied. We calculated the
voltage distribution using the standard over-relaxation method
and used periodic boundary conditions in the transverse
direction with pf = 0.1, vth = 0.1, and rh/rl = 105. The
system size L is various.

When external voltage is applied to the network and
increased from zero, no resistance change happens until Vext

reaches a threshold voltage at which dielectric breakdown
occurs as shown in Fig. 1(b). At this dielectric breakdown
voltage, an insulating bond switches to the conducting bond
depending on the voltage across the bond and it triggers an
avalanche of switchings in other bonds nearby, which results
in a percolating dielectric breakdown network. This avalanche
process is presented in Figs. 1(c), 1(d), and 1(e), which are
snapshots of the simulation after the fourth, seventh, and eighth
iterations, respectively. As shown in Fig. 1(e), the percolating
cluster is composed of singly connected bonds or links and
multiply connected bonds or “blobs.”
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FIG. 1. (Color online) Generation of the dielectric breakdown
network. (a) Initial insulating configuration where rh (off-state) and
rl (on-state) bonds are marked as thin (black) and thick (red) lines,
respectively. The top and bottom blue edges are bus bars on which
external voltage Vext is applied. (b) No resistance change happens until
Vext reaches a threshold voltage where dielectric breakdown occurs.
Snapshots of the points c, d, and e are presented in (c), (d), and (e),
respectively. (Inset) The size dependence of the zeroth moment M0

of the voltage distribution.

Inset of Fig. 1(b) shows the size dependence of the number
of the bonds carrying a current in a percolating network,
that is, the zeroth moment M0 of the voltage distribution
when the electric current is permitted to flow only through
on-state bonds. As shown in the figure, the number of bonds is
proportional to size in a power-law manner, M0 ∼ LDf , which
indicates the fractal properties of the percolating cluster of the
dielectric breakdown network.

The voltage distribution n(V ) is built up by recording the
absolute value of the voltage drops in all the bonds when a unit
potential drop is imposed across the top and bottom edges of
the percolating backbone network and then being normalized
by the number of realizations of the network and also by the
number of bonds in the backbone. Figure 2 shows the voltage
distribution with L = 160 averaged over 600 realizations.
The distribution can be divided into three regions which are
distinguished by two crossover voltages V1 and V2. As the
figure shows, the distributions of Regions 1 and 2 fit the power
laws with different exponents −γ1 and −γ2, respectively. In
Region 3, although it is difficult to conclude that it clearly
represents a certain type of scaling function because of a short
range of V , we assume that it also follows a power law with
a large exponent −γ3. Later we show that the choice of the
scaling function for Region 3 has no influence on the scaling
behavior of the qth moment. Then, considering the continuity

of the distribution we can write the voltage distribution of size
L as

n(V ) ≈
⎧⎨
⎩

C(L)V −γ1 (Region1),
C(L)V γ2−γ1

1 V −γ2 (Region2),
C(L)V γ2−γ1

1 V
γ3−γ2

2 V −γ3 (Region3),
(1)

where C(L) is a size dependent coefficient. These multiple
scaling behaviors of the voltage distribution are different
from that of the random resistor network. For comparison,
we present the logarithmic voltage distributions of both the
random resistor network near percolation threshold and the
dielectric breakdown network in the inset of Fig. 2. While
multifractal behaviors of positive moments in the random
resistor network mainly come from the high-voltage region
in which the distribution drops abruptly, no such behavior
appears in the voltage distribution of the dielectric breakdown
network which can be seen further in detail by investigating
the size dependence of the voltage distribution below. For this
study, we have performed numerical simulations on the lattices
with various sizes from L = 10 to L = 160. To obtain the
voltage distribution, we average 104 realizations for sizes from
L = 10 to L = 80, 2400 configurations for L = 112, and 600
realizations for L = 160. Figure 3(a) shows the size dependent
voltage distribution. As the figure shows, three scaling regions
become more distinctive as the size increases and C(L) is a
increasing function of L. Figures 3(b), 3(c), and 3(d) show
the size dependence of the exponents γ1, γ2, and γ3. From
Figs. 3(b) and 3(c), it seems that the exponents γ1 and γ2

converge to 0.19 and 1.73 in the thermodynamic limit. For
Region 3 it is hard to estimate the exponent γ3 due to the large
fluctuation coming from the too-large exponent magnitude;
however, it seems that it also approaches roughly to 12. Fig-
ure 3(e) shows the dependence of the crossover voltages V1 and
V2 on the system size. They have scaling relations as follows:

V1 ∼ L−α and V2 ∼ L−β, (2)
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FIG. 2. (Color online) The voltage distribution of the dielectric
breakdown network with the system size L = 160. Three regions
are distinguished by two crossover voltages V1 and V2. Values of the
slopes are denoted beside the guide lines. (Inset) The logarithmic
voltage distributions of the random resistor network near percolation
threshold (black line) and the dielectric breakdown network (red
crosses).
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FIG. 3. (Color online) (a) Size dependence of the voltage dis-
tribution. Data for L = 10, 20, 40, 80, and 160 are denoted by +
(purple), × (green), ∗ (orange), � (blue), and ◦ (red), respectively.
(b), (c), and (d) Size dependence of the exponents γ1, γ2, and γ3.
(e) Size dependence of the crossover voltages V1 and V2, which are
denoted by ◦ (blue) and � (red), respectively. The slopes for V1 and
V2 are −1.82 and −0.89, respectively.

where α ≈ 1.82 and β ≈ 0.89.
Now let us consider how this multiple scaling property

affects the behaviors of the qth moment of the voltage distribu-
tion; this can be achieved by the approximate transformation of
the discrete summation M0

∑
q n(V )V q to the continuous inte-

gration M0
∫

dV n(V )V q = M0(
∫

R1 + ∫
R2 + ∫

R3)dV n(V )V q ,
where R1, R2, and R3 denote the Regions 1, 2, and 3,

respectively. The dominant term of this integration depends on
the q value. Let us first consider the case γ1 − 1 < q < γ2 − 1
to determine the coefficient C(L). Using Eqs. (1) and (2), we
obtain

Mq/M0 = C(L)L−α(q−γ1+1), (γ1 − 1 < q < γ2 − 1).

Since γ1 ≈ 0.19 and γ2 ≈ 1.73, q = 0 belongs to this range.
Then 1(= L0) ∼ C(L)L−α(−γ1+1). Therefore, we can deter-
mine

C(L) ∼ Lα−αγ1 . (3)

Using Eq. (3), the dominant terms for all q ranges are

Mq ∼

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Lα(1−γ1)+Df V
q−γ1+1

min + L−αq+Df , (q < γ1 − 1),

L−αq+Df , (γ1 − 1 < q < γ2 − 1),

L−α(γ2−1)+Df −β(q−γ2+1), (γ2 − 1 < q < γ3 − 1),

L−α(γ2−1)+Df −β(q−γ2+1),

+L−α(γ2−1)+Df −β(γ3−γ2)V
q−γ3+1

max , (γ3 − 1 < q),

(4)

where Vmin and Vmax are the minimum and maximum voltages
in the voltage distribution with size L, respectively. Note
that uttermost values Vmin and Vmax may originate from
rare configurations which could be missed in Monte Carlo
simulations. In addition, Vmin’s obtained in our simulation
results for L � 80 cases are smaller than our simulation
accuracy (10−10), so it is hard to determine the correct size
dependence of Vmin. Therefore, now we consider only the cases
γ1 − 1 < q < γ2 − 1 and γ2 − 1 < q < γ3 − 1 and discuss
the case γ3 − 1 < q later.

As seen in Eq. (4), the exponents are linear functions of q for
the two q ranges. The slopes of the functions for γ1 − 1 < q <

γ2 − 1 and γ2 − 1 < q < γ3 − 1 cases are −α and −β, which
come from the two crossover voltages V1 and V2, respectively,
and this constant gap scaling law fails at q = γ2 − 1.

To confirm and demonstrate this analysis numerically,
we consider the normalized moment mq ≡ (Mq/Mq ′ )1/(q−q ′),
where q ′ is one of the values in the range to which q

belongs. Using the estimated values γ1 ≈ 0.19, γ2 ≈ 1.73,
and γ3 ≈ 12, we select q ′ = 0 and q ′ = 5 for γ1 − 1 < q <

γ2 − 1 and γ2 − 1 < q < γ3 − 1 ranges, respectively. Then we
obtain

mq =
⎧⎨
⎩

(Mq

M0

)1/q ∼ L−α for γ1 − 1 < q < γ2 − 1,

(Mq

M5

)1/(q−5) ∼ L−β for γ2 − 1 < q < γ3 − 1.

(5)

According to Eq. (5), all the mq belonging to the same
(different) q range should scale identically (differently) with
respect to the system size. Figure 4(a) shows the plot of mq

for several q values when −0.81 < q < 0.73 (blue symbols)
as a function of L. All mq are well fitted to the solid guide
line with the slope −α = −1.82. We also plot mq for the case
0.73 < q < 11 in Fig. 4(b). These data also agree well with
the theoretical guide line with the slope −β = −0.89. We also
plot the case q > 11 (green symbols) in Fig. 4(b), and it seems
that mq for q > 11 also follows the same guide line with slope
−0.89, which indicates Vmax � L−β . This shows that Region 3
retains its power law behavior only when Vmax ∼ L−β , whereas
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FIG. 4. (Color online) (a) Plot of mq for several q values when
−0.82 < q < 0.73 as a function of L. Data for q = 0.1, 0.3, and 0.5
are denoted by +, ×, and �, respectively. The solid line is a guide
line with a slope of −1.82. (b) Plot of mq when 11 > q > 0.73 (red
symbols) against L for various q values: q = 2.0 (+), 4.0 (×), 6.0
(�), and 8.0 (�). The slope of the solid guide line is −0.89. We also
plot the case q > 11 (green symbols). ◦ and � symbols denote data
for q = 18 and 20, respectively.

it collapses while approaching the thermodynamic limit
or Region 3 is actually a (exponentially) decaying regime
when Vmax 	 L−β . However, in either case, the analytic
results [Eqs. (4) and (5)] are valid for q > γ1 − 1 because
the contribution of a (exponentially) decaying function is
negligible. These numerical results confirm that the moments
of the voltage distribution is governed by the size-dependent
behaviors of the characteristic voltages V1 and V2.

In summary, we have studied the voltage distribution of
the two-dimensional dielectric breakdown network in which

percolating cluster is formed dynamically. This distribution
contains three distinctive power-law regions with different
exponents γ1, γ2, and γ3 which are divided by two crossover
voltages V1 and V2. This multiple scaling behavior of the
voltage distribution is different from that of the random resistor
network, showing multifractal behaviors for which infinite
exponents are needed. From the study of the size-dependent
behavior of the voltage distribution, we obtained that the scal-
ing relations of the qth moment as a function of L depend on q

linearly and understand that the two crossover voltages deter-
mine different scaling behaviors of the qth moment, which are
confirmed by numerical simulations. We think that the absence
of the multifractal feature in the dielectric breakdown network
is a result of a different mechanism generating the percolating
structure. Since the conducting path is created by a driving
antifuse dynamics, randomness is rather reduced. We expect
that this work will help to understand not only the general
statistical behaviors of the voltage distribution of the dielectric
breakdown network but also how the dominant voltage scales
with the system size. This is meaningful in the aspect that
the random access memory (RAM) application based on the
dielectric breakdown mechanism should be scaled to nano
size for high-density memory [20,21], in which finite-size
scaling properties become critical. From Eq. (4), resistance of
the percolating cluster [7] R ∼ M−1

2 ∼ L0.68. This means that
ratio between percolating and broken cluster becomes larger
as the system size decreases, which makes it much easier to
distinguish 0 (broken) and 1 (percolating) states. In addition,
noise power [7], SR ∼ ∑

α(iα/I )4 is proportional to L0.26 for
dielectric breakdown network, whereas ∼ L0.78 for the random
resistor network, which indicates the noise power is less sen-
sitive to the system size for the dielectric breakdown nework.
This result indicates that the dielectric breakdown network-
based RAM has advantages for the practical application.
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