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Crossover behavior of conductivity in a discontinuous percolation model
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When conducting bonds are occupied randomly in a two-dimensional square lattice, the conductivity of the
system increases continuously as the density of those conducting bonds exceeds the percolation threshold. Such
a behavior is well known in percolation theory; however, the conductivity behavior has not been studied yet when
the percolation transition is discontinuous. Here we investigate the conductivity behavior through a discontinuous
percolation model evolving under a suppressive external bias. Using effective medium theory, we analytically
calculate the conductivity behavior as a function of the density of conducting bonds. The conductivity function
exhibits a crossover behavior from a drastically to a smoothly increasing function beyond the percolation threshold
in the thermodynamic limit. The analytic expression fits well our simulation data.
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The concept of percolation transition has played a central
role as a model for the formation of a spanning cluster
connecting two opposite edges of a system in Euclidean space
as a control parameter p is increased beyond a certain threshold
pc [1]. This model has been used to study many phenomena
such as metal-insulator transitions and sol-gel transitions. The
order parameter P∞ of percolation transition is defined as the
probability that a bond belongs to a spanning cluster, which
increases in the form P∞(p) ∼ (p − pc)β beyond pc, where
p is a control parameter indicating the fraction of occupied
bonds and β is the critical exponent related to the order
parameter. As an application of percolation model, one can
construct a random resistor network in which each occupied
bond is regarded as a resistor with unit resistance, and the
system is in contact with two bus bars at the opposite edges
of the system. When a voltage difference is applied between
these two bus bars, the system is in an insulating state for
p < pc, but changes to a conducting state for p > pc, due to
the formation of several conducting paths at pc. Above pc, the
conductivity increases continuously as g ∼ (p − pc)μ, where
μ is the conductivity exponent [2].

Recently, the subject of discontinuous percolation transition
(DPT) has been a central issue [3–12] with, for example,
applicability to cascading failures in complex networks [13].
Among others [14–19], a model called spanning cluster
avoiding (SCA) was introduced [20] aiming to generate a
DPT. The DPT of the SCA model is rather trivial, for the
percolation threshold is placed at pc = 1 in the thermodynamic
limit, but for finite-sized systems pc < 1. Here, we study the
conductivity as a function of p in finite-sized systems for the
SCA model. Indeed, we find that the conductivity increases
drastically just after the percolation threshold and then exhibits
a crossover to a smoothly increasing behavior. Such crossover
has never been reported, though it is meaningful as a drastic
change of conductivity in random resistor networks can find
application, for example, on resistance switching phenomena
in nonvolatile memory devices [21]. From a theoretical per-
spective, the understanding of conductivity becomes comple-
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mentary to the result on the percolation transition for the SCA
model.

We first recall the SCA model. In this model, we take a two-
dimensional regular square lattice of linear size L. Initially,
the system consists of N = L2 nodes and 2N unoccupied
bonds. At each time step, one randomly chooses m unoccupied
bonds, and those potential bonds are classified into two types:
bridge and nonbridge bonds. Bridge bonds are those that
would form a spanning cluster if any of them is occupied
[22,23]. One takes a nonbridge bond randomly among those
m candidates if it exists. This choice suppresses the formation
of a spanning cluster. As the number of occupied bonds is
increased, the total number of bridge bonds NBB(p) increases
and thus the probability that those m bonds are all bridge
bonds is also increased. If such a case happens, a bridge bond
is inevitably occupied and a spanning cluster is formed. Once
a spanning cluster is formed, no more restrictions are imposed
on the occupation of bonds. It was found that when m is
greater than a tricritical point mc ≈ 2.55 in two dimensions,
the percolation transition is discontinuous and the percolation
threshold pcm approaches unity as the system size is increased
[20]. In finite-sized systems, the percolation threshold pcm

depends on the number of candidate bonds m. In this paper,
we present an analytic formula for the conductivity based
on effective medium theory [24]. The analytic prediction of
the conductivity function is in agreement with our numerical
data.

In the SCA model, the percolation threshold is delayed
by suppressing the formation of a spanning cluster. While
the percolation threshold is delayed, two large clusters form
independently, which are separated by bridge bonds. Bridge
bonds form a fractal set of fractal dimension dBB ≈ 1.215
[22]. Moreover, for m > mc, in those two separated clusters,
the density of occupied bonds is extremely high, for p close
to and above pcm. These facts enable us to apply effective
medium theory to calculate the conductivity function near
the percolation threshold for the SCA model. We recall the
conductivity function for ordinary percolation obtained from
effective medium theory near p = 1, which is geff = 2p − 1
in two dimensions [24].

Next, we derive a formula for the conductivity using
heuristic arguments. To proceed, we examine the structure of
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FIG. 1. (Color online) (a) Schematic diagram of circuit structure for p � pcm for the SCA model that consists of bonds of unit resistance. The
occupied bonds are classified into original bridge bonds (thick red resistors) and original nonbridge bonds (thin blue resistors). (b) We simplify
the whole circuit as series connection of a bundle of original bridge bonds of unit resistance and two compact clusters consiting of bonds of
resistance ra by applying effective medium theory. (c) The combined resistance of two compact clusters is calculated as r ′

a = ra(L − 1)/L ≈ ra

for large L, and the combined resistance of original bridge bonds rb is calculated as rb = 1/Lpb, where the derivations are shown in the main
text. We can calculate the conductivity as gm(p) = 1/(r ′

a + rb).

the system at the onset of the percolation transition, denoted
as p−

cm. As shown in Fig. 1(a), the system consists of two
disconnected clusters separated by unoccupied bridge bonds.
Due to the unoccupied separatrix, the conductivity of the
system is zero at p−

cm, but becomes nonzero once a bond
among those bridge bonds is occupied as shown in Fig. 2.
Since the number of bridge bonds increases as p increases for
p < pcm, from now on, we use the phrase “original bridge
bonds” to refer to those bonds that were bridge bonds at
p−

cm. Similarly, “original nonbridge bonds” are all the other
bonds. The densities of occupied bonds of original nonbridge
bonds and original bridge bonds are denoted as pa and pb,
respectively. Those two densities depend on p, and pb = 0 at
p−

cm. Then, the following relation holds:

2L2p ≈ pa(2L2 − LdBB ) + pbL
dBB , (1)

where we use the number of bridge bonds NBB(p−
cm) ≈ LdBB

and L2 � LdBB for large L. Then pa ≈ p + O(1/L2−dBB ). For
pb(p), we use the fact that the occupation of original bridge
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FIG. 2. (Color online) Plot of Gm(p) and gm(p) vs p. Gm(p)
is the fraction of nodes belonging to the spanning cluster. Gm(p)
jumps to G1(p) from zero at pcm and follows the envelope of G1(p)
after that. gm(p) is the conductivity; it becomes positive at pcm and
grows drastically after that. As m is increased, pcm is delayed. Data
are shown for m = 1 (red), m = 2 (yellow), m = 3 (green), m = 4
(blue), and m = 5 (purple) from left to right. L = 300 are considered.
Results are for a single sample.

bonds increases linearly with increasing p for p > pcm and
pb(pcm) = 0. Then, one obtains

pb(p) = p − pcm

1 − pcm

. (2)

In the spirit of effective medium theory, we assume that
original nonbridge bonds are fully occupied but we consider
that each bond has resistance ra �= 1. Next, we make a more
crude assumption. Due to the fractal nature of the set of bridge
bonds, the separatrix is not linear in its shape, and the density
of original nonbridge and original bridge bonds are different.
Thereby, the current can flow along the boundary between
the original nonbridge and original bridge bonds. However,
this current contribution to the conductivity of the system
can be negligible when the system size is sufficiently large.
Based on such facts, we simplify the system as shown in
Figs. 1(b) and 1(c). That is, the system consists of two parts, a
rectangular-shape regular lattice of size (L − 1) × L in which
original all nonbridge bonds are all occupied with resistance
ra = 2pa − 1, and one-dimensional columnar lattice of size L

in which original bridge bonds are occupied with probability
pb and unit resistance. We also assume that there exists a busbar
between the two parts, and thereby there is no net current on
each vertical bond.

This simplified picture enables us to calculate the overall
conductivity. The resistivity (the inverse of conductivity) is
obtained as

1

gm(p)
≈ 1

2pa − 1
+ 1

Lpb

, (3)

where gm(p) denotes the conductivity at p of the SCA model
with the control parameter m. We compare the analytic result
with our simulation data for different m = 2, 3, 4, and 5.
As can be seen in Fig. 3, the data for L × L = 300 × 300 is
in good agreement with the analytic expression for m � 3.
Since for these cases pcm is close to unity (for example,
pc3 ≈ 0.84, pc4 ≈ 0.94, and pc5 ≈ 0.97), the approximation
based on effective medium theory is more accurate. For m = 2,
the data clearly differs from the analytic expression. Actually,
the percolation threshold for m = 2 reduces to the one
of the ordinary percolation in the thermodynamic limit and,
therefore, the two clusters connected through original bridge
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FIG. 3. (Color online) Plot of gm(p) vs p for one sample with
L = 300. Just after pcm, gm(p) becomes positive and grows drasti-
cally. Red solid lines are obtained from Eq. (3) for m = 2 (a), m = 3
(b), m = 4 (c), and m = 5 (d). We can find that the theoretical formula
fits the simulation data well when m is larger than the tricritical point
mc ≈ 2.55.

bonds cannot be considered compact, as is necessary to apply
effective medium theory.

Finally, we recall the previous result [20] that pcm ap-
proaches one as L is increased as

1 − pcm ∼ L− 2
m−1 ( m

mc
−1) for m > mc, (4)

where mc ≈ 2.55 in two dimensions. Then, Lpb ≡ Lα(p −
pcm), where

α = 1 + 2

m − 1

(
m

mc

− 1

)
. (5)

Numerically, α ≈ 1.18, 1.38, and 1.48 for m = 3, 4,
and 5 in two dimensions, respectively. Depending on
the magnitude of p − pcm, the conductivity behaves as
follows:

gm(p) ≈
{
Lα(p − pcm) for δ 	 1/Lα,

2p − 1 for δ � 1/Lα,

where δ = p − pcm. Thus there exists a crossover in the
conductivity for δc ≈ 1/Lα . We remark that the conductivity
increases more rapidly to 2pcm − 1 for larger systems due to
the prefactor Lα .

In summary, we studied the conductivity transition of the
two-dimensional SCA model. In this model, pcm increases to
1 for m > mc ≈ 2.55, but otherwise it decreases to pc1 = 0.5
as the system size increases. We used effective medium theory
which is valid for p � pc1 to calculate the analytic expression
of conductivity in this model. We numerically confirmed the
validity of this expression for m = 2, 3, 4, and 5 in finite-sized
systems and found that the data is well fitted for m = 3, 4, and
5. However, the case m = 2 cannot be described by our theory.
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