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Abstract

A random sequential box-covering algorithm recently introduced to measure the fractal dimension in

scale-free networks is investigated. The algorithm contains Monte Carlo sequential steps of choosing the

position of the center of each box, and thereby, vertices in preassigned boxes can divide subsequent boxes

into more than one pieces, but divided boxes are counted once. We find that such box-split allowance in

the algorithm is a crucial ingredient necessary to obtain the fractal scaling for fractal networks; however,

it is inessential for regular lattice and conventional fractal objects embedded in the Euclidean space. Next

the algorithm is viewed from the cluster-growing perspective that boxes are allowed to overlap and thereby,

vertices can belong to more than one box. Then, the number of distinct boxes a vertex belongs to is dis-

tributed in a heterogeneous manner for SF fractal networks, while it is of Poisson-type for the conventional

fractal objects.
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A box-covering method is a basic tool to measure the fractal dimension of conventional

fractal objects embedded in the Euclidean space. Such a method, however, cannot be ap-

plied to scale-free networks that exhibit an inhomogeneous degree distribution and the small-

worldness. The Euclidean metric is not well defined in such networks. To check the fractality,

a random sequential box-covering algorithm was recently introduced. In the algorithm, ver-

tices within a box can be disconnected, but connected via a different box or boxes. Here we

show that such box-split allowance is an essential ingredient to obtain the fractal scaling in

scale-free networks, while it is inessential for the conventional fractal objects. Moreover, the

algorithm is viewed from a different perspective that boxes are allowed to overlap instead of

being split and thereby, vertices can belong to more than one box. Then, the number of dis-

tinct boxes a vertex belongs to is distributed in a heterogeneous manner for scale-free fractal

networks, while it is of Poisson-type for the conventional fractal objects.

I. INTRODUCTION

Fractal objects that are embedded in the Euclidean space have been observed in diverse phenom-

ena [1]. They contain self-similar structures within them, which are characterized in terms of

non-integer dimension, i.e., the fractal dimensiondB, defined in the fractal scaling relation,

NB(`B)∼ `−dB
B . (1)

HereNB(`B) is the minimum number of boxes needed to tile a given fractal object with boxes of

lateral sizè B. This counting method is called the box-covering method.

Fractal scaling (1) was also observed recently [2] in real-world scale-free (SF) networks such

as the world-wide web [3], metabolic network ofEscherichia coliand other microorganisms [4],

and protein interaction network ofHomo sapiens[5]. SF networks [6] are those that exhibit a

power-law degree distributionPd(k)∼ k−γ. Degreek is the number of edges connected to a given

vertex. For such fractal networks, since their embedded space is not Euclidean, the Euclidean

metric is replaced by the chemical distance.

One may define the fractal dimension in another manner through the mass-radius relation. The

average number of vertices〈MC(`C)〉 within a box of lateral sizèC, called average box mass,

scales in a power-law form,

〈MC(`C)〉 ∼ `dB
C , (2)
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with the fractal dimensiondB. This counting method is called the cluster-growing method below.

Hereafter, the subscriptsB andC represent the box-covering and the cluster-growing methods,

respectively. The formulas (1) and (2) are equivalent when the relationN ∼ NB(`B)〈MC(`C)〉
holds for `B = `C. Such case can be seen when fractal objects are embedded in the Euclidean

space. However, for SF fractal networks, the relation (2) is replaced with the small-world behavior,

〈MC(`C)〉 ∼ e`C/`0, (3)

where`0 is a constant. Thus, the fractal scaling can be found in the box-covering method, but not

in the cluster-growing method for SF fractal networks.

To understand this seemingly contradictory relations, here we investigate generic nature of the

box-covering method in SF networks in comparison of the cluster-growing method. Owing to the

inhomogeneity of degrees in SF fractal networks, the way of covering a network can depend on

detailed rules of box-covering methods. Recently, a new box-covering algorithm was introduced

by the current authors [7, 8]. In fact, this algorithm shares a common spirit with the one previously

introduced by Songet al.[2], however, details differ from one another in the following perspective:

Our algorithm, called random sequential (RS) box-covering method, contains a random process

of selecting the position of the center of each box. A new box can overlap preceding boxes. In

this case, vertices in preassigned boxes are excluded in the new box, and thereby, vertices in the

new box can be disconnected within the box, but connected through a vertex (or vertices) in a

preceding box (or boxes). Nevertheless, such a divided box is counted as a single one. Detailed

rule is described in the next section. Such counting method is an essential ingredient to obtain the

fractal scaling in fractal networks; whereas, it is inessential for regular lattice and conventional

fractal objects embedded in the Euclidean space.

Next, we count how many boxes a vertex belongs to in the cluster-growing algorithm, where

boxes are allowed to overlap. For the SF fractal network, the fraction of vertices countedf times

decays with respect tof in a nontrivial manner, while for the square lattice and a conventional

fractal object, it decays in a Poisson-type manner. We note that the Sierpinski gasket is used

here as a fractal object embedded in the Euclidean space. Such distinct features arising in the

SF fractal networks enables the coexistence of the two contradictory notions of the fractality and

small-worldness.
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FIG. 1: (Color online) Schematic illustration of the RS box-covering algorithm introduced [7, 8]. Vertices

are selected randomly, for example, from vertex 1 to 4 successively. Vertices within distance`B = 1 from

vertex 1 are assigned to a box represented by solid (red) circle. Vertices from vertex 2, not yet assigned

to their respective box are represented by dashed-doted-doted (black) closed curve, vertices from vertex 3

are represented by dashed-doted (green) circle and vertices from vertex 4 are represented by dashed (blue)

ellipse.

II. RANDOM SEQUENTIAL BOX-COVERING

Here we describe a new box-covering method, which takes steps as follows: We start with all

vertices labeled asnot burned. Then,

(i) Select a vertex randomly at each step; this vertex serves as a seed.

(ii) Search the network by distance`B from the seed and burned all vertices found but not burned

yet. Assignnewly burned verticesto the new box. If no newly burned vertex is found, the

box is discarded.

(iii) Repeat (i) and (ii) until all vertices are assigned to their respective boxes.

The above method is schematically illustrated in Fig. 1. A different Monte Carlo realization of

this procedure ((i)–(iii)) may yield a different number of boxes for covering the network. In this

study, for simplicity, we choose the smallest number of boxes among all the trials. To obtain the

power-law behavior of the fractal scaling, we needed at mostO(10) Monte Carlo trials for all frac-

tal networks we study. It should be noted that the box numberNB we employ is not the minimum
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FIG. 2: (Color online) Fractal scaling analysis for the two dimensional square lattice with the box-covering

algorithm. Shown are the result of one Monte Carlo trial (◦) and that obtained from 20 Monte Carlo trials

(¤). From the least-square-fit of the data (straight line), the fractal dimension is measured to be≈2.0 as

expected.

number amongall the possible tiling configurations. Finding the actual minimum number over all

configurations is a challenging task, which could not be reached by the Monte Carlo method.

To check the validity of our algorithm, we first apply our method to the two dimensional regular

lattice in Fig. 2. While our method may perform inefficiently in the highly regular structure due to

the step in which already box-assigned vertices can be selected as seeds, taking about a few hours

of cpu time for system sizeN = 500× 500, we find that our method can still yield the correct

dimension≈2.0 for the two dimensional square lattice, as shown in Fig. 2. We also show that the

number of Monte Carlo trials is not crucial to obtain the fractal scaling.

Fig.3 shows the box-covering method applied to the Sierpinski gasket with the third generation

(a). One can find easily thatNB(`E = 2) = 3 in (b) andNB(`E = 1) = 9 in (c) when lateral sizèE

is taken as the conventional Euclidean metric. The obtainedNB(`E) are the minimum numbers of

boxes needed to tile the object for each case. In Fig.3(d), we show a configuration in box-covering

ensemble obtained from our current algorithm with distance`B = 1. One can see thatNB(`B) can

vary depending on Monte Carlo trials. We show, however, that the fractal dimension is obtained

by using the conventional method in (b) and (c),dB = − ln3/ ln2. Numerical value is obtained

from the Sierpinski gasket with the 12th generation, composed of 265,721 vertices, and the fractal

scaling is shown in Fig. 4.

Our algorithm also generates the same fractal dimensions for SF fractal networks such as the

world-wide web, the metabolic network ofE. coli, the protein interaction networks ofH. sapiens
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FIG. 3: (Color online) A fractal object, the Sierpinski gasket with the second generation (a). Conventional

box covering based on the Euclidean metric with size`E = 2 (b) and`E = 1 (c). Box covering based

on chemical distancèB = 1 by using the RS box-covering method (d). Seed vertices1→ 5 are selected

successively.
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FIG. 4: (Color online)Fractal dimension of the Sierpinski gasket with the 12th generation measured by

using the RS box-covering method. Solid line is guideline with slope− ln3/ ln2. Shown are the result of

one Monte Carlo trial (◦) and that obtained from 20 Monte Carlo trials (¤).

andS. cerevisiaeas obtained by Songet al. [2]. Fig.5 shows the fractal scaling for the world-

wide web, displaying the same fractal dimensiondB≈ 4.1. In comparison of the method by Song

et al., ours is easier to implement, because it does not contain the procedure for constraining the

maximum separation within a box and is carried out in random sequential manner in box covering.

The particular definition of box size has proved to be inessential for fractal scaling. It is rather

inappropriate to compare the length scale`B with that`S used in Ref. [2], because the two methods
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FIG. 5: (Color online) Comparison of the box-covering methods introduced by Songet al. [2] (¤) and in

this paper (◦) for the world-wide web. The results obtained from the two box-covering methods applied

to the world-wide web are plotted here. The two methods yield the same fractal dimensiondB ≈ 4.1. The

method introduced by Songet al. is more optimal than ours in the viewpoint thatNB(`S) < NB(2`B +1).
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FIG. 6: (Color online) Fractal scaling analysis for the world-wide web by the two box-covering algorithms,

that of Songet al.(¤) and of ours (◦). For comparison, the horizontal scale for that of Songet al. is rescaled

as`S/1.5→ `B, by which we get the overlap of two curves obtained from the different algorithms.

involve different definitions of the boxes. What is interesting, however, is that there exists a linear

relationship, for examplèS/1.5→ `B in the case of the world-wide web as shown in Fig. 6. This

linear relationship indicates that despite the difference in the two algorithms, such a difference

does not lead to qualitatively different fractal-scaling behaviors.
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FIG. 7: (Color online) Fractal scaling analysis for the world-wide web with the RS box-covering algorithm

(◦) and its variant that disallows disconnected boxes (¤)
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FIG. 8: (Color online) Fractal scaling analysis for the square lattice (a) and the Sierpinski gasket (b) with

the RS box-covering algorithm (◦) and its variant that disallows disconnected boxes (¤). Solid lines are

guidelines with slopes of−2 in (a) and− ln3/ ln2 in (b).

III. OVERLAP OF BOX COVERING AND VERTICES DISCONNECTEDNESS

It is interesting to note that in our algorithm vertices can be disconnected within a box, but

connected through a vertex (or vertices) in a different box (or boxes) as in the case of box 2 shown
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in Fig. 1. On the other hand, if we construct a box with only connected vertices, for example, box

2 is regarded as two separate boxes, then the power-law behavior Eq. (1) is not observed for the

world-wide web as shown in Fig. 7. We check if such difference appears even for a regular lattice

and a fractal object embedded in the Euclidean space. Figs. 8 show that such different behavior

does not occur for the square lattice in two dimensions and the Sierpinski gasket. We show that

such fact originates from the inhomogeneity of degrees in SF networks as follows: Owing to their

large degree, hub vertices can be assigned to boxes earlier than other vertices when their neighbors

are selected as seeds of boxes. Once hub vertices are assigned to one of the boxes, they can make

subsequent boxes disconnected when vertices in those boxes are connected via hub vertices. Box

2 in Fig. 1 is such a case. In SF networks, such cases occur at a non-negligible rate.

To study the fraction of disconnected boxes quantitatively, we invoke the cluster-growing ap-

proach. In this approach, boxes are allowed to overlap, and thereby, a vertex can belong to more

than one box. Thus, the extent of overlap of the boxes during the tiling can provide important

information on the fraction of disconnected boxes in the box-covering method. In this regard, we

reported the cumulative fractionFc( f ) of vertices countedf times or more in the cluster-growing

method for the world-wide web in [8] and is reproduced in Fig. 9. The cumulative fractionFc( f )

is likely to follow a power law for smallf , thereby indicating that the overlaps occur in a non-

negligible frequency even for a small distance`C. The associated exponent decreases with increase

in box size`C as the chances of overlaps increase. However, for large values off , the large frac-

tion of vertices counted exceed the frequency extrapolated from the power-law behavior. For the

square lattice and the Sierpinski gasket, however, the fractionF( f ) follows a bounded distribution

with a peak at smallf as shown in Fig. 10. Thus, for the fractal networks like the world-wide web,

there are a significant number of vertices that are counted quite a few times in the cluster-growing

method, but such vertices are extremely rare in the conventional fractal objects such as the Sier-

pinski gasket. Such multiple counting due to overlap is excluded in the box-covering method. This

exclusion effect makes the average mass of a box in the box-covering method significantly lower

than that in the cluster-growing method.

Next, one may wonder if the RS box-covering algorithm can be improved in efficiency by

excluding already-burned vertices from the list of the root candidates of new boxes. In Fig. 11,

we compare the fractal scaling behaviors obtained from the two cases of keeping or excluding

already-burned vertices from the list for two networks: the world-wide web (a) and the fractal

model introduced in [7]. We find that the two cases exhibit somewhat different behaviors. If
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FIG. 9: (Color online) Cumulative fractionFc( f ) of the vertices countedf times in the cluster-growing

algorithm. Fc( f ) follows a power law in the smallf region, where the slope depends on box size`C.

However, for large values off , the data largely deviate from the value extrapolated from the power-law

behavior. Data are presented for`C = 2 (•), `C = 3 (¥), and`C = 5 (N).
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FIG. 10: (Color online) FractionF( f ) of the vertices countedf times in the cluster-growing algorithm for

the Sierpinski gasket with the 12th generation composed of 265,721 vertices.F( f ) follows a Poisson-type

distribution. Data are presented for`C = 2 (•), `C = 3 (¥), and`C = 5 (N).

the already-burned vertices are excluded from the next selection, the power-law behavior is not

obtained for the world-wide web. However, they exhibit similar power-law behaviors for the

fractal model, even though the two data sets show somewhat deviations.
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FIG. 11: (Color online) Fractal scaling analysis with the rules that allow (◦) or disallow (¤) the already-

box-burned vertices to be chosen as the roots of new boxes for the world-wide web (a), and the fractal model

(b).

IV. CONCLUSIONS AND DISCUSSION

We have studied various features of the random sequential box-covering algorithm by applying

it to a SF fractal network, the world-wide web, and a regular and a conventional fractal object,

the square lattice and the Sierpinski gasket, respectively. Results obtained from the two classes

of networks exhibit distinct feature. The condition that vertices in a box can be disconnected

in the box-covering method turns out to be an essential ingredient to have the fractal scaling

for a SF fractal network, however, it is irrelevant for a regular lattice and a conventional fractal

object embedded in the Euclidean space. We also found that the fraction of vertices counted

f times in the cluster-growing method exhibits a non-trivial behavior for the former, while it

does a trivial behavior for the latter. The two results are complementary; thereby, the SF fractal

network exhibits the fractal scaling (1) in the box-covering and the small-world behavior (3)

in the cluster-growing method. Finally, it is noteworthy that our box-covering algorithm is a

modification of the algorithm used in the random sequential packing problem [9].
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