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Nanoscale pattern formations on surface induced by ion sputtering
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Abstract

We investigate diverse pattern formations on sputter-eroded surfaces such as ripples, dots, holes, wires structures. The mor-

phological evolution of ion bombarded surface can be described by the nonlinear Kuramoto–Sivashinsky (KS) equation. Here by

performing numerical integration of the KS equation, we show that the diverse pattern formations can be controlled by adjusting

experimental conditions such as incidence angle and energy of ion beam.
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1. Introduction

The evolution of surface morphology during ion
sputtering is a complex phenomenon which induces

roughening and smoothing processes. The balance of

roughening and smoothing processes leads to pattern

formations on surface. Recently many studies have been

carried out for such pattern formations on sputter-ero-

ded surface in relation to the fabrication of nanoscale

devices.

The fabrication of nanoscale surface structures such
as quantum dots and quantum wires have attracted

considerable attention due to their applications in

optical and electronic devices [1]. These nanostructures

form thanks to various self-assembled mechanisms, in-

duced by the combined effect of strain and growth

kinetics. Yet, the strained nanostructures obtained by

these methods have a size distribution wider than re-

quired by applications, and display random alignment.
Lithographic methods [2] are often considered prime

candidates to overcome these shortcomings, but their

limited resolution offers further challenges. Conse-

quently, there is continued high demand for alternative

methods that would allow low cost and efficient mass

fabrication of nanoscale surface structures. In the light
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of these technological and scientific driving forces, the

recent demonstration by Facsko et al. that low-energy

(40 eV–1.8 keV) normal incident Arþ sputtering on
GaSb (1 0 0) surfaces leads to nanoscale islands which

display remarkably good hexagonal ordering and have a

uniform size distribution, has captured the interest of

the scientific community [3,4].

Experimental studies on ion sputtered surfaces, cov-

ering amorphous and crystalline materials (SiO2 [5]),

and both metals (Ag [6]) and semiconductors (Ge [7], Si

[8,9]), have motivated extensive theoretical work aiming
to uncover the mechanism responsible for such nano-

scale pattern formation and kinetic roughening. A par-

ticularly successful model has been proposed by Bradley

and Harper (BH) [10], in which the height hðx; y; tÞ of the
eroded surface is described by the linear equation

oth ¼ mxo
2
xhþ myo

2
yh� Kr4h; ð1Þ

where mx and my are effective surface tensions generated by

the erosion process, and K is the surface diffusion con-

stant. The balance of the unstable erosion term (�jmjo2h)
and the smoothing surface diffusion term (�Ko4h) gen-
erates ripples with wavelength ‘i ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K=jmij

p
, where i

refers to the direction (x or y) along which the associated

mi (mx or my) is the largest. When the incidence angle h is

close to grazing (normal), the ripple wave vector is per-

pendicular (parallel) to the component of the ion beam.

While successful in predicting the ripple wavelength and

orientation [11], this linear theory cannot explain a
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Fig. 1. Time evolution of (a) the surface width W 2 and (b) the mean

height �h for the parameters mx ¼ �0:0001, my ¼ �0:6169, and Kx ¼
Ky ¼ Kxy=2 ¼ 2. The different curves correspond to different values of

kx ¼ ky ¼ k. In (a), from top to bottom, the curves correspond to

k ¼ 0, )10�5, )10�4, )10�3, )10�2, and )10�1, respectively. In (b),

from bottom to top, they correspond to k ¼ �10�5, )10�4, )10�3,

)10�2, and )10�1, respectively. Inset (a): The crossover time s, esti-
mated from (a) is shown as a function of ln jkj. Inset (b): Plot of ln jvj
versus ln jkj. The dotted line has a slope�)1.07, implying v 
 1=k.
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number of experimental features such as (i) the wave-
length of ripple structure being independent of temper-

ature in low temperature regime, (ii) the saturation of the

ripple amplitude [12–14], (iii) the observation of rotated

ripples [15], and (iv) the appearance of kinetic roughen-

ing [16,17]. These phenomena can be explained by the

noisy nonlinear equation, called the Kuramoto–Siva-

shinsky (KS) equation [18],

oh
ot

¼ mx
o2h
ox2

þ my
o2h
oy2

þ kx

2

oh
ox

� �2

þ ky

2

oh
oy

� �2

�Dxy
o4h

ox2oy2
�Dxx

o4h
ox4

�Dyy
o4h
oy4

� Kr4hþ nðx; y; tÞ;

ð2Þ

where kx and ky describe the tilt-dependent erosion rates

in each direction; Dxx, Dyy , and Dxy are the ion induced

effective diffusion constants; and nðx; y; tÞ is an uncor-
related white noise with zero mean, mimicking the ran-

domness resulting from the stochastic nature of ion

arrival to the surface [18,19]. At low temperatures all the

coefficients in Eq. (2) depend on experimental parame-

ters such as the ion beam energy � and the incidence

angle of ion beam h [20], which are given in Appendix A.

In low temperature limit, the thermal diffusion term is

not relevant, while in high temperature limit, the ion
induced diffusion term, i.e., the D-term is not relevant.

For the sputter erosion process, m < 0 and D > 0, while

the signs of kx and ky vary depending on the incident

angle of the ion beam.

When the nonlinear terms and the noise are ne-

glected, Eq. (2) reduces to the linear theory Eq. (1), and

predicts ripple formation. It is known that the isotropic

KS equation (mx ¼ my < 0, Dxx ¼ Dyy ¼ Dxy=2, and
kx ¼ ky) asymptotically (for large time and length scales)

predicts kinetic roughening, with exponents similar to

those seen experimentally in ion sputtering [16]. For

positive mx and my , Eq. (2) reduces to the anisotropic

Kardar–Parisi–Zhang (KPZ) equation [21], whose scal-

ing behavior is controlled by the sign of kx � ky [22]. Fi-
nally, a recent integration by Rost and Krug [23] of the

noiseless version of Eq. (2) provided evidence that when
kx � ky < 0, new ripples, unaccounted for by the linear

theory, appear and that their direction is rotated with

respect to the ion direction [23]. The nonlinear effects

have been largely unexplored experimentally due to lack

of theoretical predictions of an experimentally detect-

able signature that distinguishes them from the linear

effects. To make specific predictions on the morphology

of ion-sputtered surfaces, we need to gain a full under-
standing of the nonlinear behavior predicted by Eq. (2).

In this paper we numerically integrate Eq. (2), aiming to

uncover the dynamics and the morphology of the sur-

faces for different values of the parameters.
2. Numerical integration

The direct numerical integration is carried out by

using standard discretization techniques to discretize the

continuum equation, Eq. (2) [24]. Since the sign of

the nonlinear terms plays a significant role in defining the

surface morphology, we discuss separately the kx � ky > 0

and kx � ky < 0 cases.

The kx � ky > 0 case: A general feature of systems such
as Eq. (2) is that the nonlinear terms do not affect the

surface morphology or dynamics until a crossover time s
has been reached. Thus, we expect that for early times,

i.e., for t < s, the surface morphology and dynamics are

properly described by the linear theory. To demonstrate

this separation of the linear and nonlinear regions, in

Fig. 1, we show the time dependences of the surface

width defined as W 2ðL; tÞ 	 1
L2
P

x;y h
2ðx; y; tÞ � �h2 and of

the mean height �h ¼ 1
L2
P

x;y hðx; y; tÞ. We find that for

t < s, the width W increases exponentially while the

mean height stays constant at �h ¼ 0. Furthermore,

inspecting the surface morphology, we find that in this

region the ripple wavelength and orientation are also

correctly described by the linear theory.

While the early time behavior is correctly predicted

by the linear theory, beyond the crossover time s, the
nonlinear terms become effective. One of the most

striking consequence of these terms is that the surface

width stabilizes rather abruptly (see Fig. 1). Further-

more, the ripple pattern generated in the linear region

disappears, and the surface exhibits kinetic roughening.

The crossover time s from the linear to the nonlinear

behavior can be estimated by comparing the strength of

the linear term with that of the nonlinear term [25]:

s 
 ðK=m2Þ lnðm=kÞ; ð3Þ
in high temperature limit. In this expression, m, K, and k
refer to the direction perpendicular to the ripple orien-

tation. The predicted k-dependence of s is confirmed in

the inset of Fig. 1(a). Another quantity that reflects the
transition from the linear to the nonlinear region is the
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erosion velocity v ¼ ot�h. The nonlinear terms act to
decrease the mean height in the case of kx < 0 and ky < 0.

We can estimate the surface velocity as v 
kW ðL; sÞ2=
‘2 
 m3=ðKkÞ using W ðL; sÞ 
 m=k. This dependence of v
on k is consistent with the numerical results shown in the

inset of Fig. 1(b).

The kx � ky < 0 case: As Fig. 2(a) shows, we again

observe a separation of the linear and the nonlinear

regions; however, we find that the morphology and the
dynamics of the surface in the nonlinear region are quite

different from the case kx � ky > 0. In region I, for early

times (t < s), the surface forms ripples whose wave-

length and orientation is correctly described by the lin-

ear theory. After the first crossover time s, given by Eq.

(3), the surface width is stabilized, and the ripples dis-

appear. After s, the system enters a rather long transient

region, that we call region II. Here, the surface is rough,
and no apparent spatial order is present. We often ob-

serve the development of individual ripples, but they

soon disappear, and no long-range order is present in

the system. However, at a second crossover time, s2, a
new ripple structure suddenly forms, in which the ripples

are stable and rotated with an angle /c to the x direc-

tion. The angle /c has the value /c ¼ tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kx=ky

p
,

(or tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ky=kx

p
) [23].

The demonstrated morphological transitions generate

an anomalous behavior in �h as well. As Fig. 2(a) shows,

the mean height is zero in the linear region, increases as

the ripples are destroyed in region II, and decreases with

a constant velocity in region III. More specifically, rip-

ples are aligned along the y-axis in region I, because

‘x � ‘y . Thus, the contribution of ðoxhÞ2 is much larger

than that of ðoyhÞ2, even though jkxj < jky j, and the
surface height increases due to the term kxðoxhÞ2 with

kx > 0 in region II. However, as the ripples are de-

stroyed by the nonlinear effects, the contribution of the

ðoyhÞ2 term increases, and eventually kyðoyhÞ2 becomes

larger than kxðoxhÞ2, forcing the mean height to decrease

because ky < 0. The velocity in region III is determined
h
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Fig. 2. (a) Time evolution of the mean height �h (dashed, left linear

scale) and the surface width (solid, right logarithmic scale) for the

parameters, mx ¼ �0:6169, my ¼ �0:01, Kx ¼ Ky ¼ Kxy=2 ¼ 2, kx ¼ 1,

and ky ¼ �4. The dotted lines seperate the three regions discussed in

the text. (b) The dependence of jvj on the nonlinear terms jkx þ ky j for
the same parameters used in (a). The dotted line has a slope�)1.02,
implying v 
 1=ðk1 þ k2Þ.
by the nonlinear coefficient in the direction along the
ripples, which reduces to kx þ ky after a coordinate

transformation to the rotated ripple direction. This

prediction is in good agreement with the results of Fig.

2(b), which demonstrates that v 
 1=ðkx þ kyÞ.
3. Nanoscale dot and hole formation

Under normal incidence [26], the coefficients in Eq.

(2) are isotropic and are given by [19,20]

m 	 mx ¼ my ¼ �faa2r=2a
2
l; ð4Þ

D 	 Dx ¼ Dy ¼
Dxy

2
¼ fa3a2r=8a

4
l; ð5Þ

k 	 kx ¼ ky ¼ f =2a2l
� �

a2r
�

� a4r � a2l
�
; ð6Þ

where al ¼ a=l and ar ¼ a=r. The morphology of the

ion-sputtered surface at three different stages of time

evolution is shown in Fig. 3. Let us first concentrate on

the k > 0 case (upper panels in Fig. 3). In the early stages

of the sputtering process, the surface is dominated by

small, wavy perturbations (Fig. 3(a)) generated by the
interplay between the ion-induced instability and surface

relaxation. However, since the system is isotropic in the

ðx; yÞ plane, these ripple precursors are oriented ran-

domly, generating short wormlike morphologies on the

surface. After some characteristic time, s, these structures
turn into isolated but closely packed islands, reminiscent

of the quantum dots reported experimentally (Fig. 3(b))

[27]. Note that upon a closer inspection one can observe
the emergence of hexagonal order in the island positions.

As the sputtering proceeds, the supporting surface

develops a rough profile, destroying the overall unifor-

mity of the islands (Fig. 3(c)). The magnitudues of the
Fig. 3. (a–c) Surface morphologies predicted by Eq. (2) for k ¼ 1 at

different stages of surface evolution. The pictures correspond to (a)

t ¼ 4:0, (b) 5.8, and (c) 8.0 · 104. (d–f) are the same as in (a–c), but for

k ¼ �1. In all cases, we used m ¼ 0:6169, K ¼ 2, and a system size

256· 256.



Fig. 4. The amplitudes of the structure factors jSðq0Þj for the nanoscale
structures in Fig. 3(a–c), respectively.
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structure factor for each case of Fig. 3(a)–(c) are given in

Fig. 4. A similar scenario is observed for k < 0, the only

difference being that now the islands are replaced by

holes (Fig. 3(d)–(f)). The first conclusion we can draw

from these results is that the development of quantum

dots and holes is governed by the same underlying

physical phenomena, the only difference being that for
quantum dots we have k > 0, and for holes k < 0. In-

deed, this morphological change is expected from the

nonlinear continuum theory, Eq. (2), being symmetric

under the simultaneous transformation k ! �k and

h ! �h, indicating that changing the sign of k does not

affect the dynamics of the surface evolution, but simply

turns the islands into mirrored holes. Since, according to

Eq. (5) the sign of k is determined only by the relative
magnitudes of ar and al, whether islands or holes appear

is determined by the shape of the collision cascade [26].

Consequently, using Eq. (5) we can draw a phase dia-

gram in terms of the reduced penetration depths, ar and

al, that separate the regions displaying quantum dots

and holes [26]. These results also indicate that the

quantum dots and holes are inherently nonlinear objects,

since, should the linear terms be responsible for their
formation, the surface morphology should not depend

on the sign of k (Eq. (1) has a full h ! �h symmetry).

Using Eqs. (3) and (4), we find that ‘ ¼
ffiffiffi
2

p
pl; i.e.,

from the average separation of the islands one can

determine the size of the horizontal width of the colli-

sion cascade [26]. Furthermore, since typically we have

l 
 a 
 �2m, when � is the ion energy and m is an con-

stant that weakly depend on � (m ¼ 1
2
for � � 10–100

keV), we predict that one can tune the size of the

quantum dots by changing the ion energy �, while the

size is independent of the flux and the temperature.
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Fig. 6. The shaded region in the parameter space ðh; alÞ for ar ¼ 1

(inset: for ar ¼ 2) corresponds to the region where the RRS can form.
4. Nanoscale wire formation

Rotated ripple structures (RRS) form when kxky < 0
and the rotation angle is given by /c ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�kx=ky

p
.

As shown in Fig. 5, the angle /c increases with the ratio

al ¼ a=l, but decreases with the incident angle h. The
KS equation in the rotated frame can be written in the

same form as Eq. (2) except that the coefficients m, D,
and k are replaced by m0, D0, and k0, which are functions
of those in the original frame and the angle /c. In the

rotated frame one of the coefficients of the nonlinear

terms, say k0x0 , is equal to zero, and the other is given by

k0y0 ¼ kx þ ky , where ðx0; y0Þ represents the coordinates in
the rotated frame. Since k0x0 vanishes, the dynamic

equation in the x0 direction becomes linear. Conse-
quently, the ripple pattern is along the x0 direction as

long as (i) m0x0 < 0; (ii) D0
x0x0 > 0; and (iii) kxky < 0.

Therefore the conditions (i), (ii), and (iii) are the nec-

essary conditions for the formation of the RRS.

We investigate the satisfiability of these conditions in

the parameter space (h; al ¼ a=l) for different values of
ar ¼ a=r. We find that when al > 1 and ar ¼ 1 or

al > 2 and ar ¼ 2, the RRS can form in the region de-
picted in Fig. 6. For al < 1 given ar ¼ 1, the shaded

region satisfying (i)–(iii) scarcely exists, so that the for-

mation of RRS is less likely. That means the RRSs are

expected to form when the longitudinal width r is larger

than the transverse width l, that is, r > l. Recent

experimental results indicate that for graphite surfaces r
depends on �, while l is independent of � for large �
(2–50 keV) [28]. Therefore, the r > l condition can be
met when the energy of the incident ion beam is high

enough. Thus in order to obtain the RRS experimentally

it is desirable to use high energy ion beam with an

appropriate choice of the incidence angle (Fig. 6).

However, the use of a high energy ion beam increases s2
in Fig. 2 rapidly, requiring a longer exposure time.

Since the nonlinear term disappears in the x0 direction
the surface in this direction is driven by a linear insta-
bility. The amplitude of the RRS grows exponentially

with time until the nonlinear term in the y0 direction
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becomes effective, after which the amplitude saturates.
Meanwhile, the surface in the y0 direction displays kinetic

roughening due to the presence of the nonlinear term

k0y0 ðoy0hÞ
2=2, so that the roughness in the y0 direction is

considerably reduced compared with the roughness in

the x0 direction. Therefore the RRS develops a rough

morphology in the x0 direction, while it is relatively

smooth in the y0 direction, the end configuration resem-

bling a V-shaped wire pattern, as shown in Fig. 7 [29].
The RRS formed in the nonlinear regime is comparable

with the ripple pattern formed in the linear regime, where

there are modulations in both directions, and the

roughness in each direction is almost of the same order.

We also examined the structure factor

SðqÞ ¼
Z

dr

ð2pÞ2
expðiq � rÞHðrÞ; ð7Þ

where HðrÞ is the height–height correlation function,

Hðr; tÞ ¼
X
r0

hðr0
*

þ r; tÞhðr0; tÞ
+

�
X
r0

h2ðr0; tÞ
* +

;

ð8Þ
averaged over different configurations [30]. We find that

the structure factor exhibits a peak at ðqx;c; qy;cÞ, corre-
sponding to (q0x0;c; 0) in the rotated coordinates (Fig. 8).
Fig. 7. Surface morphology of the RRS, as generated by numerical

simulations, with al ¼ 1:3, ar ¼ 1 and h ¼ 43:56�.
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Fig. 8. The amplitude of the structure factor jSðq0Þj for the RRS shown

in Fig. 7. The peak of the structure factor is at aq0x0 ;c ¼ 0:33 and

q0y0 ;c ¼ 0, implying that the wire structure is straight along the y0 axis.
The inset shows the comparison between the amplitudes of the struc-

ture factor for the RRS (solid line) and for the linear ripple (dotted

line), implying the amplitude of the RRS is about a factor of 107 larger

compared to that of the ripple structure formed in the linear regime.
The fact that q0y0 ;c ¼ 0 confirms that the RRS is straight
in the y0 direction. Moreover, the amplitude of the

structure factor for the RRS is much larger compared to

the ripple formed in the linear regime, as shown in the

inset of Fig. 8. Accordingly, the RRS could be a good

candidate for the fabrication of nanowires [31].
5. Conclusion

We have examined diverse pattern formations on

sputter-eroded surfaces in terms of the KS equation.

Such pattern formations are closely related to experi-

mental observations. We also proposed the possibility of

the RRS formation, potential candidates for nanowires

for electron transport. We predicted that the RRS can

be generated under high energy ion beam, in contrast
with the formation of nanoscale dots structure occurring

during low energy ion beam sputtering. Since high

energy ion beam causes longer crossover time for the

formation of the RRS, exposure time of the ion beam

has to be adjusted to obtain the desired RRS.
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Appendix A
mx ¼ a
a2r
2f 3

2a4rs
4

n
� a4ra

2
ls

2c2 þ a2ra
2
ls

2c2 � a4lc
4
o
; ðA:1Þ

my ¼ �a
c2a2r
2f

; ðA:2Þ

kx ¼
c

2f 4
a8ra

2
ls

4ð3
n

þ 2c2Þ þ 4a6ra
4
ls

2c4 � a4ra
6
lc

4ð1þ 2s2Þ

� f 2ð2a4rs2 � a2ra
2
lð1þ 2s2ÞÞ � a8ra

4
ls

2c2 � f 4
o
;

ðA:3Þ

ky ¼
c

2f 2
a4rs

2
n

þ a2ra
2
lc

2 � a4ra
2
lc

2 � f 2
o
; ðA:4Þ

Dxx ¼
a3

24

1

f 5

n
� 4 3a2rs

2f
�

þ a6rs
4
�
f 2

þ a2rc
2 3f 2
�

þ 6a4rs
2f þ a8rs

4
�
f þ a2rc

2 3f 2
�

þ 6a4rs
2f

þ a8rs
4
�
f þ 2ða2l � a2rÞc2 15a2rs

2f 2
�

þ 10a6rs
4f þ a10r s6

�o
; ðA:5Þ

Dyy ¼
a3

24

1

f 5

3a2r
a2l

f 4c2
� �

; ðA:6Þ
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Dxy ¼
6a3

24

1

f 5

f 2

a2l
�
n
� 2ða2rs2Þf 2 þ a2rc

2ðf 2 þ a4rs
2f Þ

þ 2ða2l � a2rÞc2ð3a2rs2f þ a6rs
4Þ
o
: ðA:7Þ

In the above expressions, we denoted

ar 	 a=r; al 	 a=l; s 	 sin h;

c 	 cos h; f 	 a2rs
2 þ a2lc

2: ðA:8Þ
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