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The diffusion processes on complex networks may be described by different Laplacian matrices due to
heterogeneous connectivity. Here we investigate the random walks of blind ants and myopic ants on heterogeneous
networks: While a myopic ant hops to a neighbor node every step, a blind ant may stay or hop with probabilities
that depend on node connectivity. By analyzing the trajectories of blind ants, we show that the asymptotic
behaviors of both random walks are related by rescaling time and probability with node connectivity. Using
this result, we show how the small eigenvalues of the Laplacian matrices generating the two random walks are
related. As an application, we show how the return-to-origin probability of a myopic ant can be used to compute
the scaling behaviors of the Edwards-Wilkinson model, a representative model of load balancing on networks.
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I. INTRODUCTION

Random walks in disordered media have been studied
extensively to investigate a wide range of interesting topics
including anomalous diffusion [1–3], the first passage time
in searching problems and diffusion limited reactions [4–
9], epidemic spreading [10–12], synchronization phenomena
[13], the exploration and navigability of networks [14–21], and
the community detection [22–25]. Various types of random-
walk processes have been proposed since de Gennes coined the
term “ant in the labyrinth” [26]. In particular, random walks of
a blind ant and a myopic ant have attracted much attention. The
transition matrix of a blind ant can be described as follows.
As the blind ant at node i cannot see whether i and j are
connected by a link or not, it blindly attempts to hop to an
arbitrary node j with equal probability ε. Consequently the
blind ant stays at i with probability 1 − εki with ki the number
of neighbor nodes of node i. Consequently, ε is bounded as
ε < 1/kmax, where kmax is the largest degree in the system. On
the other hand, a myopic ant does not stay but always hops; it
hops from a node i to a neighbor node j with probability 1/ki .
The properties of the transition matrices and the occupation
probabilities of both types of ants have long been studied
[27,28]. In the stationary state, the occupation probability for
each ant is given differently; it is identical at every node for
blind ants [21,29], while it is proportional to the number of
links of each node in case of myopic ants [30]. Despite such
difference, it has been shown that the scaling behaviors of the
mean square displacement and the diffusion time of both types
of ants are in the same universality class on random percolating
clusters [31,32].

During the last decades, scale-free topology of real-world
networks has been identified from the World Wide Web to
social and biological networks [33,34]. The abundance of
hub nodes brings many interesting features of the dynamical
processes on scale-free networks [35]. In particular, it was
shown that the random walks of myopic ants on scale-free
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networks exhibit crossover behaviors of the return-to-origin
(RTO) probability and that the Laplacian spectra of dense
random scale-free networks have a gap [36–38]. One may
wonder if such crucial heterogeneity of complex networks
influences the case of blind ants as well.

In this paper we show analytically and numerically that
the long-time behaviors of the occupation probabilities of
blind and myopic ants are not different; however, rescaling
of the occupation probability and time by node connectivity
is needed appropriately. This finding leads us to find how
the small eigenvalues of their transition matrices are related.
The transition matrices of blind ants are used in the Edwards-
Wilkinson model of the load balancing problem of underlying
networks [39–42] and the Kuramoto model of synchronization
phenomena in the strong-coupling limit [43]. We show how
the scaling behaviors of the roughness and the synchronization
order parameter in complex networks can be understood by
the RTO probability of myopic ants displaying crossover
behaviors [37].

II. OCCUPATION PROBABILITIES OF BLIND AND
MYOPIC ANTS

The random walks of a blind ant and a myopic ant on
an arbitrary undirected graph G of N nodes and � links are
defined as follows. The adjacency matrix of G and the degree
of each node i are denoted by A and ki , respectively. Our study
is restricted to sparse networks, the ones having finite mean
connectivity 〈k〉 = 2�/N = O(1).

A blind ant at a node � may stay there with probability
1 − εk� or hop to a neighbor node j with probability ε with ε

being a parameter. Then the occupation probability qji(τ ) at
node j and τ time steps after starting at node i is evaluated
as

qji(τ ) = (Bτ )ji , Bj� = (1 − εkj )δj� + εAj�. (1)

To prevent the waiting probability 1 − εki from being negative,
we impose the condition ε < 1/max(ki).

On the other hand, a myopic ant at node � hops to a neighbor
node j with probability 1/k�. Therefore the occupation
probability pji(n) of a myopic ant at node j and n time steps
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after starting at node i is given by

pji(n) = (Mn)ji =
∑

{i2,i3,...,in}

n∏
�=1

Ai�+1i�

ki�

,

(2)

Mj� = Aj�

k�

,

where i = i1,i2, . . . ,in,in+1 = j denotes the sequence of the
nodes visited by the myopic ant during n steps.

Each trajectory of a blind ant consists of waiting and
hopping alternatively. Classifying the trajectories of a blind ant
according to the number of hops n as qji(τ ) = ∑∞

n=0 q
(n)
ji (τ ),

we find that the n-hop occupation probability q
(n)
ji (τ ) of a blind

ant is represented as

q
(n)
ji (τ ) =

⎧⎪⎨
⎪⎩

Bτ
iiδij (n = 0)∑
{i2,i3,...,in}

∑
{τ1,τ2,...,τn+1} B

τn+1
jj

×∏n
�=1

(
Bi�+1i�B

τ�

i�i�

)
δ∑n+1

�=1 τ�,τ−n (n � 1)
,

(3)

where i = i1,i2,i3, . . . ,in,in+1 = j denotes the sequence of
the nodes visited by the blind ant and τ� is the time spent at
node i�. The diagonal (off-diagonal) elements of B represent
the waiting (hopping) probabilities, and the quantity B�′�B

τ
��

represents the probability that the blind ant stays at node � for
τ time steps and then hops to a neighbor node �′.

Taking the limit ε → 0 and τ → ∞ with t = ετ fixed, the
occupation probability of a blind ant can be considered as a
function of continuous time t :

Qji(t) = lim
ε→0

qji

(
τ = t

ε

)
. (4)

In Appendix A, we show that Qji(t) is well defined in this
limit.

In this continuous-time scheme, B�′�B
τ
�� → εe−k�t and

the n-hop occupation probability is given by Q
(0)
ji (t) =

δij exp(−kj t) and for n � 1,

Q
(n)
ji (t) =

∑
{i2,i3,...,in}

∫
dtn+1

∫ n∏
�=1

d t� Ai�+1i�

× exp

(
−

n+1∑
�=1

ki� t�

)
δ

(
n+1∑
�=1

t� − t

)
. (5)

The Laplace transform Q̂
(n)
ji (s) = ∫ ∞

0 dt Q
(n)
ji (t) e−st is

given by Q̂
(0)
ji (s) = δij /(kj + s) for n = 0 and for n � 1:

Q̂
(n)
ji (s) = 1

(kj + s)

∑
{i2,i3,...,in}

n∏
�=1

ki�

ki� + s

Ai�+1i�

ki�

. (6)

Here the term ki�/(ki� + s) is the Laplace transform of ki�e
−ki�

t ,
which is the probability that the walker at node i� waits for t

and hops to any of its neighbor nodes during time interval dt =
ε−1. The term Ai�+1i�/k� describes the probability of hopping
to a specific neighbor node i�+1 under the condition that the
walker hops between t and t + dt .

The term
∏n

�=2 ki�/(ki� + s) in (6) depends on the degrees
of the nodes lying on the path connecting i and j . To proceed,

we assume that the degrees ki2,ki3 , . . . ,kin are independent
of one another. Then the degree distribution of the neighbor
node of a node of degree k is independent of k, i.e., P (k′|k) =
kPd (k)

〈k〉 , given the degree distribution Pd (k) = N−1 ∑N
i=1 δki ,k of

a node. And for n � 1, we can use the central-limit theorem,
n∏

�=2

ki�

ki� + s
= exp

[
(n − 1)

〈
log

k

k + s

〉
link

+σ
√

n − 1 ξ

]
,

(7)

where 〈log k
k+s

〉link is the average of log k
k+s

for the
degree of the node at one end of a randomly chosen link,
given by 〈log k

k+s
〉link = ∑

k
kPd (k)

〈k〉 log k
k+s

, and σ is its

standard deviation σ =
√

〈(log k
k+s

)2〉link − 〈log k
k+s

〉2
link.

ξ can be considered as a random variable assigned to
each path {i2, . . . ,in}, and its distribution over different
paths is assumed to satisfy 〈ξ 〉 = 0 and 〈ξ 2〉 = 1 by the
central limit theorem. We are interested in the large-t
behavior of Qji(t), which is related to the singular
behavior of Q̂ji(s) for small s. The small-s singularity of
Q̂ji(s) arises from summing the infinitely many large-n
terms in Q̂ji(s) = ∑∞

n=0 Q̂
(n)
ji (s). In Eq. (7), one can see

that the first term is dominant over the second one in
the right-hand side for n � 1. Expanding 〈log k

k+s
〉link

for small s as 〈log k
k+s

〉link = ∑∞
r=1

(−1)r

r
〈( s

k
)r〉link =

−s〈k−1〉link + (1/2)s2〈k−2〉link + O(s3), we can approximate∏n
�=2

ki�

ki�
+s

in Eq. (7) by e−s〈k−1〉link(n−1). Then the remaining

sum
∑

{i2,i3,...,in}
∏n

�=1
Ai�+1 i�

ki�

in Eq. (6) turns out to be
equal to the occupation probability of a myopic ant pji(n).
Summing those approximated Q̂

(n)
ji (s)’s for all n � 1 and

using Q̂
(0)
ji (s) = δij /(kj + s), we obtain

Q̂ji(s) 	 δij

kj + s

+ ki

(kj + s)(ki + s)

∞∑
n=1

e−(n−1)s〈k−1〉linkpji(n). (8)

Even though the first few terms with small n in the summation
should be corrected due to the fluctuation against the central
limit theorem, the singular behavior of the summation for
small s is due to the infinite sum of large-n terms and the
corrections of the small-n terms do not affect it. Also the
leading singular behavior of Q̂ji(s) for small s is expected to
come from the summation rather than the factor 1/(kj + s)
or ki/[(kj + s)(ki + s)], as the decaying behavior of pji(n)
is slower than any exponential function in most networks
including the networks of finite spectral dimension ds where
pji(n) ∼ n−ds/2 [5] and the random networks of ds → ∞,
where pji(n) ∼ n−ξ exp(−αn1/3) with α and ξ constants [29].
Therefore we have

Q̂ji(s) 	 1

kj

p̂ji

(
e−s〈k−1〉link

)
, (9)

where we introduced the generating function p̂ji(z) =∑∞
n=0 znpji(n). Taking the inverse Laplace transform of

Eq. (9), we find that the asymptotic behaviors of the occupation
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probabilities of two types of ants are related to each other by

Qji(t) 	 〈k〉
kj

pji(〈k〉t), (10)

where we used 〈k−1〉link = 1/〈k〉. Equation (10) shows that
the occupation probabilities of a blind ant and a myopic ant
are identical in the long-time regime only if their time and
probabilities are rescaled by the mean connectivity 〈k〉 and the
degree kj .

In the limit t → ∞, Eq. (10) is always satisfied. As
mentioned in Sec. I, the occupation probabilities of both ants
in the limit t → ∞ are known to be given by Qji(t → ∞) =
N−1 and pji(t → ∞) = kj/(2�), respectively [30], and thus
Eq. (10) holds.

The validity of Eq. (10) for t finite but large depends
on the validity of Eq. (9) as an approximation of Eq. (6).
Approximating 〈log k

k+s
〉link in Eq. (7) by −s〈k−1〉link to obtain

Eq. (8) and approximating 1/(kj + s) and 1/(ki + s) in Eq. (8)
by 1/kj and 1/ki , respectively, to obtain Eq. (9) can be justified
for s small (s � 1). The resultant deviation between both sides
of Eq. (10) may thus be small for t large (t � 1). On the other
hand, Eq. (7) itself and dropping the term σ

√
n − 1ξ in Eq. (7)

to obtain Eq. (8) are justified when the degrees of adjacent
nodes are uncorrelated and n is large such that the central
limit theorem yielding 〈ξ 〉 = 0 and 〈ξ 2〉 = 1 is valid. The
latter assumption is related to the topology of the considered
network. (See Appendix B for the complete discussion.)

The leading behavior of Q̂ji(s) for large s comes from
Q̂

(0)
ji (s) = δij /(kj + s), and thus the short-time behavior of

Qji(t) is given by Qji(t) 	 δij e
−kj t , implying that the blind

walker is very likely to stay at the starting node for t small as
shown in Appendix A.

We check the validity of Eq. (10) by numerical results.
We simulate the random walks of the two kinds of ants on
the Barabási-Albert (BA) model networks with its model
parameter m = 1 and the (2,2) flower networks in the seventh
generation [44,45], both of which are scale-free networks. In
1, it is shown that the occupation probability pji(t) of myopic
ants and the predicted one p̃ji(t) = kj

〈k〉Qji( t
〈k〉 ) from Eq. (10)

by using Qji(t) of blind ants are in good agreement for large
t . Deviation between the RTO probabilities pii(t) and p̃ii(t) is
seen for small t , which is partly due to the term δij /(kj + s)
dropped in Eq. (9), transformed to δij e

−ki t in the time domain,
and is larger for ki smaller. The time regime where pji(t) and
p̃ji(t) show a good agreement appears different in different
networks and for different pairs of selected nodes i and j even
in the same network. We define the relative deviation

ηji(t) ≡ p̃ji(t) − pji(t)

pji(t)
(11)

and measure it as a function of time for each case considered in
Fig. 1, which is shown in Fig. 2. We find that ηji(t) decreases
slowly with time without an identifiable characteristic time at
which the deviation is significantly reduced. The magnitude
and time dependence of ηji(t) seem to vary with the network
topology and the two selected nodes i and j . Remarkably,
the relative deviation seems decreasing with time in a way
close to a power law t−1 in some of the considered cases. In
Appendix B, we perform a detailed analysis of the correction

(a)

(c)

(e)

(f)

(d)

(b)

p j
i(

t)
p j

i(
t)

p j
i(

t)

tt

ki

kj

ki

kj

ki

kj

ki

kj

ki

kj

ki

kj

FIG. 1. (Color online) Comparison of the occupation probability
pji(t) of myopic ants (lines) and the predicted one p̃ji(t) =
kj

〈k〉Qji( t

〈k〉 ) (points) from that of blind ants Qji(t) and Eq. (10) in
scale-free networks. (a) The RTO probability pii(t) of myopic ants
and its prediction p̃ii(t) made from Qji(t) of blind ants in a BA
network with m = 1(〈k〉 = 2) and N = 3000. The spectral dimension
is ds = 4/3. The node i is the one selected randomly and has degree
ki = 137. (b) The RTO probabilities pii(t) and p̃ii(t) in the same BA
networks as in (a) for a different node i with ki = 1. (c) The
occupation probability pij (t) and the predicted one p̃ij (t) in the
same BA network with two selected nodes i and j having degrees
ki = 137 and kj = 1, respectively. (d) pii(t) and p̃ii(t) in the same
BA networks with two selected nodes having degrees ki = 1 and
kj = 13, respectively. (e) The RTO probabilities pii(t) and p̃ii(t) in a
(2,2) flower network in the seventh generation with N = 10924 and
〈k〉 = 3. The spectral dimension is ds = 2 and the selected node i has
degree ki = 16. (f) The occupation probabilities pij (t) and p̃ij (t) in
the same (2,2) flower network as in (e) for two selected nodes having
degrees ki = 16 and kj = 128.

terms arising from approximating Eq. (6) by Eq. (9) and show
that the obtained correction terms can yield the t−1 decay of
ηji(t) in uncorrelated networks of finite spectral dimension ds .
It is related to the neglected next leading-order terms in s in
approximating Eq. (6) by Eq. (9).

III. LAPLACIAN SPECTRA

The asymptotic equality in Eq. (10) suggests a relationship
between the eigenvalues of the Laplacian matrices generating
the random walks of myopic and blind ants. The transition
matrices B and M in Eqs. (1) and (2) are represented in terms
of two different Laplacian matrices L and L̃,

Lij = kiδij − Aij , L̃ij = δij − Aij

kj

, (12)

as Bij = δij − εLij and Mij = δij − L̃ij , respectively [36].
From Eqs. (1), (2), and (4), one can see that the occupation
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FIG. 2. (Color online) Plots of the relative deviation ηji(t) =
p̃j i (t)−pji (t)

pji (t) for each pair of selected nodes i and j , (a) i = j with
ki = 137, (b) i = j with ki = 1, (c) ki = 137 and kj = 1, and (d)
ki = 1 and kj = 13 in the BA network and (e) i = j with ki = 16
and (f) ki = 1 and kj = 128 in the (2,2) flower networks as considered
in Fig. 1. The lines are guide for the eye, which have slope −1.

probabilities are represented as

Qji(t) = (e−Lt )ji , pji(n) = ((I − L̃)n)ji . (13)

Note that we consider the random walk of blind ants in the
continuous-time limit as in Eq. (4).

Suppose that λr and μr (� = 1,2, . . . ,N ) are the rth
smallest eigenvalues of L and L̃, respectively. Note that λ1 =
μ1 = 0 as

∑
i Lij = 0 and

∑
i L̃ij = 0. Then the occupation

probabilities Qji(t) and pji(n) in Eq. (13) can be decomposed
into these eigenmodes decaying with time as e−λr t and e−μr t

as

Qji(t) = e
(1)
ji

[
1 +

∞∑
r=2

e−λr t
e

(r)
ji

e
(1)
ji

]
,

〈k〉
kj

pji(〈k〉t) = 〈k〉
kj

ẽ
(1)
ji

[
1 +

∞∑
r=2

(1 − μr )〈k〉t ẽ
(r)
ji

ẽ
(1)
ji

]

	 〈k〉
kj

ẽ
(1)
ji

[
1 +

∞∑
r=2

e−μr 〈k〉t ẽ
(r)
ji

ẽ
(1)
ji

]
, (14)

where e
(r)
ji = 〈j |r〉〈r|i〉 (ẽ(r)

ji = 〈j |r〉〈r|i〉) is the multiplica-
tion of the j th and ith components of the right and left
eigenvector of L(L̃) associated with λr (μr ). The last line
of the equation holds as t → ∞. Note that e

(1)
ji = N−1 and

ẽ
(1)
ji = kj

2�
, which leads to the agreement of the stationary-

state probabilities Qji(t → ∞) = e
(1)
ji = N−1 and 〈k〉

kj
pji(t →

∞) = 〈k〉
kj

ẽ
(1)
ji = N−1 for t � λ−1

2 . In the time regime λ−1
2 �

t � λ−1
3 , Qji(t) is represented as a function of tλ2 since

FIG. 3. (Color online) The relative deviation μr−λr /〈k〉
μr

of the

eigenvalues μr and λr of two Laplacian matrices L and L̃

in Eq. (12). The eigenvalues are obtained numerically for the
model networks having different spectral dimensions ds and the
degree exponent γ : the (2,2) flower networks in the seventh
generation (N = 10924,〈k〉 = 3,ds = 2,γ = 3), the BA networks
with m = 1 (N = 16 000,〈k〉 = 2,ds = 4/3,γ = 3) and m = 2 (N =
16 000,〈k〉 = 4,ds → ∞,γ = 3), and the Sierpinski gasket in the
eighth generation (N = 9843,〈k〉 = 4,ds = 2 log 3/ log 5,γ → ∞).
The dashed line has slope 1.

Qji(t) 	 N−1[1 + e−λ2t
e

(2)
ji

e
(1)
ji

]. Equation (10) holds approxi-

mately in this time regime, which implies that 〈k〉
kj

pji(〈k〉t)
should be represented as 〈k〉

kj
pji(〈k〉t) 	 N−1[1 + e−μ2〈k〉t ẽ

(2)
ji

ẽ
(1)
ji

]

with 〈k〉μ2 	 λ2 and
ẽ

(2)
ji

ẽ
(1)
ji

	 e
(2)
ji

e
(1)
ji

. Given those obtained rela-

tions of λ2,μ2 and their associated eigenvectors, we fur-
ther find for λ−1

3 � t � λ−1
4 that the approximate identify

of Qji(t) 	 N−1[1 + e−λ2t
e

(2)
ji

e
(1)
ji

+ e−λ3t
e

(3)
ji

e
(1)
ji

] and 〈k〉
kj

pji(〈k〉t) 	

N−1[1 + e−μ2〈k〉t ẽ
(2)
ji

ẽ
(1)
ji

+ e−μ3〈k〉t ẽ
(3)
ji

ẽ
(1)
ji

] implies 〈k〉μ3 	 λ3 and
ẽ

(3)
ji

ẽ
(1)
ji

	 e
(3)
ji

e
(1)
ji

. Repeating this inductive reasoning, we find that

λr 	 〈k〉μr (15)

and
e

(r)
ji

e
(1)
ji

	 ẽ
(r)
ji

ẽ
(1)
ji

for small eigenvalues. The relation λr 	 〈k〉μr

is based on the asymptotic equality of λr−1 and 〈k〉μr−1, and
therefore the deviation of both sides of Eq. (15) is expected to
accumulate with increasing r .

The relative deviation μr−λr/〈k〉
μr

numerically obtained for
model networks is presented in Fig. 3. As μr decreases, the
deviation is shown to decrease, supporting the validity of
Eq. (15) for small μr . The relative deviation of the eigenvalues
appears to grow linearly with μ for the BA network with m = 1
and the (2,2) flower network, which is related to the t−1 decay
of the relative deviation ηji(t) in Fig. 2 and is discussed in
Appendix B.

The relative deviation appears depending on the network
topology. For instance, while the relative deviation becomes
less than 10−1 for μ � 0.25 in the (2,2) flower networks in
the seventh generation, it does around μth 	 0.03 in the BA
networks with m = 1 as shown in Fig. 3. As the relative
deviation between pji(t) and p̃ji(t) in Fig. 2 is related to
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the difference between μr and λr/〈k〉 via Eq. (14), the larger
relative deviation between pji(t) and p̃ji(t) in the BA network
can be attributed to the larger deviation of the eigenvalues
than in the flower networks. In the Sierpinski gasket, we
find the relative deviation is quite small over a wide range
of eigenvalues as all the nodes except for the three oldest ones
have the same degree.

We remark that in contrast to other networks, the BA
networks with m = 2 has the second smallest eigenvalue λ2

not sufficiently small even for large N (= 16 000). With a large
value of λ2 for finite N , the random walk reaches the stationary
state with relatively small numbers of steps as the term e−λ2t

decays fast in Eq. (14). It has been shown that λ2 approaches
0 in the thermodynamic limit N → ∞ as long as the smallest
degree is 1 or 2 [29].

IV. DISCUSSION

Given the heterogeneity of node connectivity characteristic
of real-world complex networks, it is highly necessary to
understand how the dynamical processes depend on the
specific way the node heterogeneity is incorporated into the
dynamics. In this work, we have found that the long-time
behaviors of the two types of random walks, those of blind
ants and myopic ants, in heterogeneous networks are identical
only if time and probability are rescaled by node connectivity
as in Eq. (10). This result for the long-time behaviors of
the occupation probabilities of blind and myopic ants allows
us to find that the small eigenvalues of the two Laplacian
matrices L and L̃ governing the two kinds of random walks
are proportional to each other.

As an application, we can use the known features of the
random walk of myopic ants to understand the dynamical
processes driven by the Laplacian L of blind ants. The
Edwards-Wilkinson(EW) model [39,40] describes the load
balancing network as well as the fluctuating interface under
thermal noise. To be specific, the load variables {hi} assigned
to the nodes evolve with time in the EW model by the following
Langevin equation:

∂hi(t)

∂t
= −

N∑
j=1

Lijhj + ξi(t), (16)

where ξt (t) is a white noise applied to each node i satisfying
〈ξi(t)ξj (t ′)〉 = 2δ(t − t ′)δij .

One of the most interesting features of the EW model
is the scaling behaviors of the load fluctuation at a node

wi(t) =
√

〈(hi(t) − h̄(t))2〉st with h̄(t) = N−1 ∑N
i=1 hi(t) and

〈•〉st meaning the ensemble average. The square root of the

node-averaged load fluctuation w(t) ≡
√

N−1
∑N

i=1 (wi(t))
2

is called the roughness [39]. The occupation probability Qij (t)
of a blind ant is the Green’s function of Eq. (16). For an initial
network with no loads, hj (0) = 0 for all j , the height hi(t) is
represented as

hi(t) =
∑

j

∫ t

0
Qij (t − t ′)ξj (t ′) dt ′. (17)

Then, in the stationary state (t → ∞), the load fluctuation
wi(∞) can be evaluated by using the occupation probability
of a myopic ant in Eq. (10) as

wi(∞)2 =
∫ ∞

0
[Qii(t) − Qii(∞)] dt

	 1

ki

∫ ∞

0
[pii(t) − pii(∞)] dt. (18)

We have recently found the crossover behaviors of the
RTO probability pii(t) in scale-free networks with the degree
exponent γ and the spectral dimension ds , which are given by

pii(t) ∼
⎧⎨
⎩

t−d
(hub)
s /2 for 1 � t � tc(ki),

ki t
−ds/2 for tc(ki) � t � tx,
ki

〈k〉N for t � tx,

(19)

with the two time scales tc(ki) ∼ k
2(γ−1)/ds

i and tx ∼ N2/ds [37].
In the early-time regime, an anomalous dimension d (hub)

s ≡
ds

γ−2
γ−1 characterizes the time decay of the RTO probability.

Using Eq. (19) in Eq. (18) we can obtain the scaling behaviors
of the load fluctuation,

wi(∞)2 ∼
⎧⎨
⎩

N2/ds−1 (I) ds < 2,

k−α
i (II) 2 < ds < dc,

k−1
i (III) ds > dc,

(20)

where the parameters α = (1 − 2/ds) (γ − 1) and dc ≡ 2(γ −
1)/(γ − 2) are introduced. It is noteworthy that the integral
is essentially determined by the long-time behavior of Qii(t)
in the case of d (hub)

s � 2 (ds < dc), and thus one can utilize
Eq. (10). On the other hand, if d (hub)

s > 2 (ds > dc), Qii(t) in
the early-time regime makes a dominant contribution to the
integral, and we cannot use Eq. (10). Nevertheless, Eq. (20)

FIG. 4. (Color online) (a, b) The load fluctuations ωi(∞)2 on the
BA networks with m = 1 and m = 2 as a function of degree ki .
As shown in Eq. (20), it follows the power law with the predicted
exponents 0 and −1, respectively. The cross and open circle symbols
indicate the exact results using the Laplacian L and the corresponding
result using Eq. (10), respectively. Their relative deviation are shown
in (c) for the BA network with m = 1 and (d) with m = 2. Even
though the relative deviation seems to increase with ki , it remains
quite small in the entire range of ki .
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holds true since the integral converges to a finite constant
independent of N . By averaging over all nodes i, we obtain
the roughness wst = w(∞) in the stationary state

w2
st ∼

⎧⎨
⎩

N2/ds−1 (I) ds < 2,

k−α (II) 2 < ds < dc,

k−1 (III) ds > dc,

(21)

where the node average is denoted by • = N−1 ∑
i •. This

shows that the EW model presents a roughened load distri-
bution in random networks with ds � 2. Also, the local load
fluctuation depends on the node degree if ds > 2. In Fig. 4,
we present the numerical results for the scaling behavior of
the load fluctuation in for the BA networks with m = 1(ds =
4/3) and m = 2(ds → ∞), which are in good agreement
with Eq. (20).

The Kuramoto model for synchronization phenomena in
heterogeneous networks is also described in terms of the
Laplacian L in the strong-coupling limit. The similar analysis
to the one we applied for the EW model allows us to see that the
lower critical dimension of the Kuramoto model [43] is given
in terms of the spectral dimension of the underlying network
as ds = 4 [46].
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APPENDIX A: RANDOM WALK OF BLIND ANTS IN THE
CONTINUOUS-TIME LIMIT

In Eq. (1), we obtained the occupation probabil-
ity qji(τ ) in terms of the matrix Bj� = (1 − εkj )δj� +
εAj�. With the Laplacian L in Eq. (12), one can
write B = I − εL, where I denotes the N × N iden-
tity matrix. If ε � 1 and τ = t/ε with t a fixed

constant, one can see that

qji

(
τ = t

ε

)
= ((I − εL)τ )ji

= exp

[
−τ

(
εL + 1

2
ε2L2 + · · ·

)]
ji

= exp {−tL [1 + O(εL)]}ji . (A1)

Therefore if we take the limit ε → 0 and τ → ∞ with t =
τ/ε fixed, the occupation probability in Eq. (A1) becomes a
function of t defined as

Qji(t) ≡ lim
ε→0

qji

(
τ = t

ε

)
= exp(−tL)ji . (A2)

Equation (A1) suggests that Qji(t) is well defined for all values
of t ∈ (0,∞) as long as ελr � 1 for all r = 1,2, . . . ,N with
λr the eigenvalues of L. The condition is identical to ε �
1/λN given that λ1 = 0 < λ2 � λ3 · · · � λN . ε should also
satisfy ε < 1/kmax to prevent the transition probability Bij

from being negative. As λN < 2kmax [47], one can choose ε

so that ε � 1/kmax. We remark that Qji(t) in Eq. (A2) is
the formal solution of the following continuous time Markov
chain,

dQji(t)

dt
= −

∑
k

LjkQki. (A3)

From Eq. (A2), one can see that for t so small as t � 1/ki =
1/Lii , Qji(t) 	 δij − tLij = δij − tkiδij and therefore

Qji(t) 	 e−tki δji = Q
(0)
ji (t),

implying that the probability of a random walker to experience
one or more jumps for such small t is negligible. Note that the
Laplace transform of Qji(t) in this time regime is given by

Q̂
(0)
ji (s) = δij

kj + s
. (A4)

APPENDIX B: CORRECTION TERMS IN
APPROXIMATING EQ. (6) BY EQ. (9)

Inserting Eq. (7) in Eq. (6) and using Q̂ji(s) =∑∞
n=0 Q̂

(n)
ji (s), one obtains

Q̂ji(s) = δji

kj + s
+ ki

(kj + s)(ki + s)

∞∑
n=1

e−s(n−1)〈k−1〉link+(1/2)s2(n−1)〈k−2〉link+O(s3n)

×
∑

i2,...,in

es
√

n−1
√

〈k−2〉link−〈k−1〉2
linkξ+O(s2√nξ )

n∏
�=1

Ai�+1i�

ki�

, (B1)

where we used the expansion for σ appearing in Eq. (7) for small s as

σ 2 ≡
〈(

log
k

k + s

)2
〉

link

−
〈
log

k

k + s

〉2

link

= (〈k−2〉link − 〈k−1〉2
link

)
s2 − (〈k−3〉link − 〈k−1〉link〈k−2〉link

)
s3 + O(s4). (B2)

In the sum over n in the right-hand side of Eq. (B1), the terms with n � s−1 make little contribution due to the exponential
term e−s(n−1)〈k−1〉link . For n � s−1 and s small, other terms appearing in the exponents in Eq. (B1) are much less than 1. Utilizing
the expansion ex 	 1 + x for small x, we can find that Q̂ji(s) in Eq. (B1) can be approximated by Eq. (8) with the additional
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correction terms as

Q̂ji(s) 	 δji

kj + s
+ ki

(kj + s)(ki + s)

∞∑
n=1

e−(n−1)s〈k−1〉linkpji(n) + R̂
(m)
ji (s) + R̂

(xi)
ji (s), (B3)

where the leading correction terms are

R̂
(m)
ji (s) =〈k−2〉link

kj

∞∑
n=1

e−s(n−1)〈k−1〉link
1

2
s2(n − 1)

∑
i2,...,in

n∏
�=1

Ai�+1i�

ki�

= − 1

kj

〈k−2〉link

2〈k−1〉link
s2 ∂

∂s
p̄ji(s〈k−1〉link), (B4)

R̂
(ξ )
ji (s) =

√
〈k−2〉link − 〈k−1〉2

link

kj

∞∑
n=1

e−s(n−1)〈k−1〉links
√

n − 1
∑

i2,...,in

ξi2,...,in

n∏
�=1

Ai�+1i�

ki�

with

p̄ji(s) =
∞∑

n=0

e−snpji(n + 1). (B5)

R̂
(m)
ji (s) arises from approximating the mean value 〈log k

k+s
〉link

by −〈 s
k
〉link and R̂

(ξ )
ji (s) originates in neglecting the term

σ
√

n − 1ξ in Eq. (7). While we assumed that s is small, as
we are concerned in the large-t regime, for approximating
〈log k

k+s
〉link by −〈 s

k
〉link, the absence of correlation between

the degrees of adjacent nodes on the paths connecting nodes
i and j and the random distribution of the fluctuation ξ over
different paths are assumed to neglect σ

√
n − 1ξ . Therefore

R̂
(ξ )
ji (s) depends on the network topology. Notice that p̄ji(s) in

Eq. (B5) and p̂ji(e−s) = ∑∞
n=0 e−snpji(n) satisfy the relation

p̄ji(s) = es(p̂ji(e−s) − δij ). Regarding the small-s singularity,
the factors 1/(ki + s) and 1/(kj + s) in front of the summation
in Eq. (B3) are transformed to e−ki t and e−kj t . Since we are
interested in the large-t behavior of Qji(t) that is expected
to decay with time slower than such an exponential decay,
we neglect those factors in the expressions for the correction
terms in Eq. (B4). Let us denote Eq. (8), equal to the first
and the second line of Eq. (B3), by Q̂∗

ji(s). Then Eq. (B3)

is represented as Q̂ji(s) = Q̂∗
ji(s) + R̂

(m)
ji (s) + R̂

(ξ )
ji (s). Q̂∗

ji(s)
can be represented in terms of the generating function
p̂ji(e−s〈k−1〉link) = ∑∞

n=0 e−sn〈k−1〉linkpji(n) as

Q̂∗
ji(s) = δij

kj + s
+ ki

(kj + s)(ki + s)
es〈k−1〉link

× [
p̂ji

(
e−s〈k−1〉link

) − δij

]
= δij

kj + s

[
1 − kie

s〈k−1〉link

ki + s

]

+ kie
s〈k−1〉link

(kj + s)(ki + s)
p̂ji

(
e−s〈k−1〉link

)
. (B6)

Using the expansion es〈k−1〉link 	 1 + s〈k−1〉link and 1
ki+s

	
1
ki

(1 − s
ki

) for small s, we find that the leading singular

behavior of Q̂∗
ji(s) is represented as

Q̂∗
ji(s) 	 1

kj

p̂ji

(
e−s〈k−1〉link

) + R̂
(p)
ji (s) (B7)

with the correction term R̂
(p)
ji (s) given by

R̂
(p)
ji (s) = s

kj

(
〈k−1〉link − 1

ki

− 1

kj

)
p̂ji

(
e−s〈k−1〉link

)
. (B8)

Therefore Q̂ji(s) is represented in terms of that of a myopic
ant p̂ji(s) as

Q̂ji(s) 	 1

kj

p̂ji

(
e−s〈k−1〉link

) + R̂
(m)
ji (s) + R̂

(ξ )
ji (s) + R̂

(p)
ji (s)

(B9)

with the correction terms given in Eqs. (B4) and (B8). Taking
the inverse Laplace transform of R̂

(m)
ji (s) and R̂

(p)
ji (s), we obtain

that for t large,

R
(m)
ji (t) 	 1

kj

〈k−2〉link

2〈k−1〉2
link

∂2

∂t2

[
tpji

(
t

〈k−1〉link
+ 1

)]
,

(B10)

R
(p)
ji (t) 	 1

kj

(
1 − k−1

i + k−1
j

〈k−1〉link

)
∂

∂t

[
pji

(
t

〈k−1〉link

)]
.

These two correction terms are given in terms of the derivatives
of pji(n). On the other hand, R

(ξ )
ji (t) is not simply represented

in terms of pji(n) owing to the random variable ξ in Eq. (B4).
If ξ is positive or negative randomly from path to path, the sum∑

i2,...,in
· · · in Eq. (B4) will be reduced considerably compared

with that without ξ , and thus the contribution of R
(ξ )
ji (t) will

be smaller than R
(m)
ji (t) or R

(p)
ji (t). However, the randomness

of ξ could be violated depending on the network topology,
and then R

(ξ )
ji (t) would be considerable. The relative deviation

considered in Eq. (11) is contributed to by the correction terms
as ηji(t) = η

(ξ )
ji (t) + η

(m)
ji (t) + η

(p)
ji (t) with

η
(ξ )
ji (t) = R

(ξ )
ji (t)

pji(t)
, η

(m)
ji (t) = R

(m)
ji (t)

pji(t)
, η

(p)
ji (t) = R

(p)
ji (t)

pji(t)
.

(B11)
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If pji(t) decays with time t algebraically, pji(t) ∼ t−θ with θ

a constant, which is the case for the RTO probability in the
network of finite spectral dimension [37], then one can find
that both η

(m)
ji (t) and η

(p)
ji (t) behave as

η
(m)
ji (t) ∼ t−1, η

(p)
ji (t) ∼ t−1 (B12)

from Eq. (B10). Therefore the scaling behavior ηji(t) ∼
t−1 shown in Fig. 2 may originate in that of η

(m)
ji (t) and

η
(p)
ji (t). Such slow decay of the relative deviation implies the

absence of a characteristic time scale at which the corrections
are significantly reduced, except for the time at which the
stationary state is achieved. In the stationary state, pji(n)
becomes constant, given by kj/(2L), and thus the correction
terms in Eq. (B10) vanish, which is obvious from the validity
of Eq. (10) in the t → ∞ limit.

To see why the relative deviation
μ− λ

〈k〉
μ

is proportional to μ

as observed in Fig. 3, suppose that the ordered eigenvalues μr

of L̃ and λr of L are related to each other by

μr = λr

〈k〉 + �r (B13)

with �r their deviation assumed to be small. Then
the spectral density functions ρμ(μ) = N−1 ∑N

r=2 δ(μr −

μ) and ρλ(λ) = N−1 ∑N
r=2 δ(λr − λ) are related to each

other by ρμ(μ) 	 〈k〉[ρλ(〈k〉μ) − ∂ρλ

∂λ
〈k〉�]. Note that

the spectral density functions are related to the
occupation probabilities by the Laplace transforma-
tion, pji(t) = pji(t → ∞) + kj

〈k〉
∫

dμρμ(μ)e−μt f̃ji(μ) with

f̃j i(μ) ≡ N−1ρμ(μ)−1 ∑N
r=2 δ(μr − μ)

ẽ
(r)
ji

ẽ
(1)
ji

, and Qji(t) is

similarly represented in terms of ρλ(λ) with fji(λ) ≡
N−1ρλ(λ)−1 ∑N

r=2 δ(λr − λ)
e

(r)
ji

e
(1)
ji

from Eq. (14). If we assume

that pji(t) ∼ t−θ as above and f̃j i(μ) does not exhibit a more
dominant singular behavior than ρμ(μ) for μ small, then
ρμ(μ) ∼ μθ−1 and ρλ(λ) ∼ λθ−1. It has been shown that large
class of networks satisfy such properties [48]. Therefore the
deviation of the occupation probabilities

p̃ji(t) − pji(t) ∼
∫

dλ
∂ρλ

∂λ
�e

− λ
〈k〉 t fji(λ) (B14)

can behave as t−1pji(t) ∼ t−θ−1 only when

� ∼ λ2, (B15)

which means that the relative deviation
μ− λ

〈k〉
μ

∝ μ as seen in
Fig. 3.
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