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Phase transition in the biconnectivity of scale-free networks
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In information-transport and biological systems, sometimes there is more than one pathway between two
nodes, so that there is a backup in case one pathway becomes defective. The size of such biconnected nodes can
be an important measure of the robustness of a system. The giant biconnected components of diverse real-world
networks suggest the importance of scale-free topology in biconnectivity. Thus, here, we consider the critical
behavior of the largest biconnected component (BC) as links are added and form a random scale-free network.
The critical exponents β(BC) and β(SC) associated with the order parameter of the percolation transition of the
biconnected component and the single-connected component (SC), respectively, are compared. We obtain a ratio
β(BC)/β(SC) = λ − 1 for 2 < λ < 3 and 2 for λ > 3, where λ is the exponent of the degree distribution in scale-free
networks. We also determine the finite-size scaling behavior of the order parameter analytically and numerically.

DOI: 10.1103/PhysRevE.87.022804 PACS number(s): 89.75.−k, 64.60.aq, 64.60.an

I. INTRODUCTION

The network approach has successfully unveiled the design
and working principles of various real-world systems owing
to the exploration of their interconnectivity patterns [1–3].
Graph theory has been used to quantitatively characterize the
structure and function of complex systems [4,5]. In particular,
the investigation of single-connected components (SCs), a set
of nodes connected to one another by at least one path, has
allowed a variety of useful results to be obtained because SCs
sustain structural robustness and form the modules facilitating
information transport among nodes. The existence of a giant
SC, i.e., an SC of size comparable to the system size N ,
is considered an indicator of structural robustness of the
entire system [6,7], which is necessary for achieving collective
behavior at the system level [8].

As an extension of the SC, one may consider a biconnected
component (BC), in which every pair of nodes has more than
one node-disjoint path. Here two paths are considered as node
disjoint if they do not have any node in common. In fact, the
importance of biconnected and multiconnected components
in complex networks has been recognized [9,10]. In the
presence of external or internal perturbations, the existence
of two disjoint paths connecting two nodes has an important
implication: The nodes can communicate and function even
under the failure of one pathway [10]. A system with a giant BC
can therefore achieve functional stability even when some parts
are broken. Further, it has been shown that the size of the giant
BC essentially determines the transport properties of complex
networks [9]. Thus, such backup pathways are essential in the
architecture of the Internet and biological systems because
overall functions can operate by cooperative activities of
individual parts. For example, in Escherichia coli metabolic
networks, there exist synthetic lethal reactions that are located
along two disjoint pathways [11]. When they are removed
simultaneously, the biomass of the organism is significantly
reduced, which results in critical damage to the organism. By
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using a flux-balance analysis, it was found that one pathway of
the pair is never used in the wild type, but it becomes activated
in case the reactions in the other pathway are blocked. Thus,
biconnected pathways are essential in biological systems.

The formalism for the relation between the sizes of a
giant SC and a giant BC was derived in Ref. [10], and
it was applied to completely random or Erdős-Rényi (ER)
networks. However, many networks in real-world systems
exhibit significantly heterogeneous connectivity patterns and
contain macroscopic-size BCs that are different from the giant
BCs in ER networks, as shown in Fig. 1. Nevertheless, little
is known about the BCs in such heterogeneous networks,
and thus, it is important to investigate the BCs in scale-
free networks, which follow power-law degree distributions
Pd (k) ∼ k−λ.

In this study, we consider the formation of the BC as the
number of links is increased and derive an analytic solution
of the percolation transition of a giant BC as a function of
the mean degree 〈k〉, which is the average number of links per
node. We find that in scale-free networks, such as ER networks,
the giant BC and SC emerge at the same critical point. In
particular, when the degree exponent λ is smaller than 3, the
critical point is 〈k〉c = 0, and thus, a giant BC appears for all
nonzero 〈k〉. However, the growth of a giant BC beyond the
critical point is slower than that of a giant SC. Interestingly, this
difference is reduced significantly as λ approaches 2, which
is shown in terms of the critical exponent associated with
the order parameter. Furthermore, our theoretical approach
enables us to derive the limiting behaviors of the finite-size
scaling function up to the coefficients. We show that these
analytic predictions agree very well with the numerical results
obtained for scale-free model networks.

II. ANALYTIC RESULTS

In this section, we apply the branching process approach
for the formation of a giant BC to the static model of scale-free
networks [18,19]. It has been shown [10] that a node belongs
to a giant BC if it has more than one link leading to a giant SC,
as there are only BCs of size O(1), except for the giant BC,
if it exists. Let u be the probability for a link to not lead to a
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FIG. 1. (Color online) Sizes of the giant BCs of real-world
scale-free (SF) networks. The relative sizes m2 = S2/N of the
World Wide Web (WWW) [12], the Internet at the autonomous
system (AS) level in years 2008 and 2010 [13], the protein-protein
interaction network of Homo scipens [14], the metabolic networks of
two organisms (Mycobacterium vanbaalenii PYR-1 and Oligotropha
carboxidovorans OM5) [15], the coauthorship network of the cond-
mat archive [16], and the dating network from a study of US school
students [17] are presented vs their mean degrees 〈k〉. The simulation
results of the static model with λ → ∞ and λ = 2.2 are also presented
for comparison. The number of nodes in each network is given in
parentheses. The data points of real networks are shown to be closer
to the giant BCs of scale-free networks than to those of ER networks.
The inset shows the estimated degree exponents of the considered
real-world networks.

giant SC. Then, the relative size m2 = S2/N of a giant BC in
a network of system size N is evaluated by

m2 = 1 − G(u) − (1 − u)G′(u), (1)

where G(z) ≡ ∑
k Pd (k)zk is the generating function of the

degree distribution Pd (k) of the considered network and
G′(z) = dG/dz. Notice that 1 − G(u) corresponds to the
probability for at least one link of a node to lead to a giant
SC and (1 − u)G′(u) is the probability for exactly one link of
a node to do so [10]. Thus, m2 is the probability for a node to
belong to a giant BC.

A. Probability u and the largest SC

The statistics of the SCs in the static model can be derived
by investigating the ensemble of trees generated under the
branching probability of k daughters, q(k) = (k + 1)Pd (k +
1)/〈k〉, where 〈k〉 = 2L/N is the mean degree and L is the
number of links in the system [20].

If the largest SC in a network, composed of S1 nodes, is
a tree structure, a link in the largest SC will lead to an SC
of size ranging between 1 and S1 − 1. The average size S̃ of
such SCs is roughly S1/2, and the number of links leading to
an SC larger than S̃ = S1/2 is S1, among 2L links, given two
directions for each link. Thus we obtain

1 − u = S1

2L
= S̃

L
. (2)

If one considers the size distribution R(s) of the SC reached
by following a link in one direction, S̃ is determined by the

condition
∑

s>S̃ R(s) = S1/(2L) = S̃/L. We will refer to R(s)
as the cluster-size distribution. Its generating function R(z) =∑∞

s=1 R(s)zs satisfies the self-consistent equation [10,20,21]

R(z) = z
G′(R(z))

〈k〉 . (3)

In the static model [19], a link is assigned between nodes
i and j with probability PiPj , where Pi is the weight of
node i given by Pi = i−μ/ζN (μ), with 0 � μ < 1, ζN (μ) =∑N

i=1 i−μ, and μ = 1/(λ − 1). The degree distribution in the
static model is analytically accessible through its generating
function G(z) = N−1 ∑N

i=1〈zki 〉, which is expanded for z to
be close to 1 as

G(z) =
∞∑

n=0

gn,N [〈k〉(1 − z)]n

	
∞∑

n=0

gn [〈k〉(1 − z)]n + g1/μ 〈k〉1/μ(1 − z)1/μ, (4)

where the expansion in the second line holds in the limit (1 − z)
〈k〉Nμ → ∞. The coefficients are [20]

gn,N = (−1)n(1 − μ)nζN (μn)Nμn−1/�(n + 1), (5)

gn = (−1)n(1 − μ)n/[(1 − μn)�(n + 1)], (6)

g1/μ = −�(1 − 1/μ)(1 − μ)1/μ. (7)

It is remarkable that gn,N = gn for n < 1/μ. The singular term
(1 − z)1/μ is related to the asymptotic behavior Pd (k) ∼ k−λ

with λ = 1 + 1/μ.
From Eq. (1), one finds that m2 is nonzero if and only

if u < 1. Therefore, a giant BC appears at the same critical
point as a giant SC [10]. In the thermodynamic limit N → ∞,
u = limz→1 R(z) = ∑

s<S̃ R(s) is smaller than 1 as long as S̃

is of order N ; i.e., the largest SC becomes a giant SC. By
setting z = 1 in Eq. (3), we have

u = G′(u)

〈k〉 . (8)

When the coefficient of the (1 − u) term on the right-hand side
of Eq. (8) expanded in terms of 1 − u is smaller than −1, u is
found to be smaller than 1, from which we identify the critical
point given by

〈k〉c = 1

2g2,N

=
{ 1−2μ

(1−μ)2 for λ > 3,

N1−2μ

(1−μ)2ζ (2μ) for 2 < λ < 3.
(9)

Here ζ (x) = ∑∞
i=1 i−x is the Riemann zeta function. It should

be noted that, for 2 < λ < 3, g2,N diverges and 1 − u is
nonzero for all 〈k〉 > 0 in the thermodynamic limit. For
convenience, we divide the range of μ into three regions:

(i) 0 � μ < 1
3 (4 < λ < ∞),

(ii) 1
3 < μ < 1

2 (3 < λ < 4),

(iii) 1
2 < μ < 1 (2 < λ < 3).

In the supercritical phase with 〈k〉 > 〈k〉c and u < 1, it
holds that (1 − u)〈k〉Nμ → ∞, and we use the second line of
Eq. (4) to obtain the behavior of 1 − u depending on μ for
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0 < � = 〈k〉/〈k〉c − 1 
 1 as

1 − u 	

⎧⎪⎨
⎪⎩

a(I) � (I),

a(II) �μ/(1−2μ) (II),

a(III) 〈k〉(1−μ)/(2μ−1) (III),

(10)

where

a(I) = − 1

3g3〈k〉2
c

, a(II) =
(

− μ

g1/μ〈k〉1/μ−1
c

)μ/(1−2μ)

,

a(III) =
(

g1/μ

μ

)μ/(2μ−1)

. (11)

For finite N , the value of 1 − u may be nonzero even at the
critical point, as S̃/L is not zero in Eq. (2). The large-s behavior
of R(s) is related to the singularity of its generating function
R(z) for z close to 1: If R(z) 	 1 − c(1 − z)τ−1 with τ a
noninteger and c a constant, then R(s) 	 −c/�(−τ + 1)s−τ

for s � 1. By expanding Eq. (3) for small 1 − z and 1 − R(z),
one finds the behavior of R(z) for z close to 1:

1 − R(z) 	

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a
1/2
(I) (1 − z)1/2 (I),

a
1−2μ

1−μ

(II) (1 − z)
μ

1−μ (II),

a
2μ−1

μ

(III) 〈k〉
1−μ

μ

c (1 − z)
1−μ

μ (III),

(12)

with a(I), a(II), and a(III) given in Eq. (11). Note that 〈k〉c for
μ > 1/2 is of the order N1−2μ.

Using R(s) obtained from Eq. (12) in the relation∑
s>S̃ R(s) = S̃/L, one obtains S̃ and, in turn, the value of

1 − u in the critical regime, given by

1 − u 	

⎧⎪⎨
⎪⎩

b(I) N−1/3 (I),

b(II) N−μ (II),

b(III) N−(1−μ) (III),

(13)

where

b(I) = [
2a

1/2
(I) /|�(−1/2)|]2/3

(2/〈k〉c)1/3,

b(II) =
[

(1 − μ)a(1−2μ)/(1−μ)
(II)

|�[−μ/(1 − μ)]|μ
]1−μ (

2

〈k〉c

)μ

, (14)

b(III) =
[

μa
(2μ−1)/μ
(III)

|�(1 − 1/μ)|(1 − μ)

]μ

21−μ = 21−μ(1 − μ)1−μ.

The relative size of the largest SC is evaluated by using u in
the relation m1 = S1/N = 〈k〉(1 − u), which has been studied
in Ref. [20].

B. Finite-size scaling of the largest BC size

Although we obtained the probability u under the tree-
structure assumption, it is valid around the critical point [20].
We insert Eq. (4) into Eq. (1) to obtain m2 as

m2 	
{∑∞

n=2 gn,N 〈k〉n(n − 1)(1 − u)n for Nμ〈k〉(1 − u) 
 1,∑∞
n=2 gn〈k〉n(n − 1)(1 − u)n + g1/μ

(
1
μ

− 1
)〈k〉1/μ(1 − u)1/μ for Nμ〈k〉(1 − u) � 1.

(15)

We note that gn,N = gn for n < 1/μ and gn,N = O(Nμn−1)
for n > 1/μ.

Next, we determine the dominant term in formulas (15)
of m2 for each regime. For regions (I) and (II) (λ > 3), the
dominant contribution is made by the term g2〈k〉2

c(1 − u)2 [10].
This term yields in region (I)

m2 	
{

g2〈k〉2
ca

2
(I)�

2 (supercritical phase),

g2〈k〉2
cb

2
(I)N

−2/3 (critical phase),
(16)

and in region (II), it yields

m2 	
{

g2〈k〉2
ca

2
(II)�

2μ/(1−2μ) (supercritical phase),

g2〈k〉2
cb

2
(II)N

−2μ (critical phase).
(17)

In region (III) (2 < λ < 3), the term (1/μ − 1)g1/μ〈k〉1/μ(1 −
u)1/μ is dominant in the supercritical phase, which gives

m2 	 g1/μ

(
1

μ
− 1

)
a

1/μ

(III)〈k〉1/(2μ−1). (18)

In the critical regime, the value of m2 has contributions from
all the terms in the expansion of Eq. (1), as gn,N 〈k〉n(1 − u)n =
O(N−1) for all n � 2.

We summarize the behavior of m2 in the critical and
supercritical phases in the scaling form as

m2 	
{

N−β/ν	(�N1/ν) (I) and (II),

N−1	(�) (III),
(19)

where the finite-size scaling function 	(x) behaves as

	(x) ∼
{

φ for x → 0,

ψxβ for x → ∞,
(20)

with φ and ψ as constants. The critical exponents β and ν are
derived from Eqs. (10) and (13) as

(β,ν) =

⎧⎪⎨
⎪⎩

(2,3) (I),(
2

λ−3 , λ−1
λ−3

)
(II),(

λ−1
3−λ

,
)

(III).

(21)

We remark that the exponent ν is not available for 2 < λ < 3.
The coefficients φ and ψ are determined analytically by using
the coefficients a and b in Eqs. (11) and (14) as

(φ,ψ) 	
{ 〈k〉c

2 × (
b2

(I),a
2
(I)

)
(I),

〈k〉c
2 × (

b2
(II),a

2
(II)

)
(II),

(22)
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and

φ =
∞∑

n=2

(n − 1)ζ
(

n
λ−1

)
�(n + 1)

(
− (λ − 1)b(III)

(λ − 2)ζ [2/(λ − 1)]

)n

,

ψ = 1 − μ

μ
g1/μa

1/μ

(III) (23)

for region (III).
The exponent β characterizes how fast a giant BC forms

with an increasing number of links around the critical point.
The fact that β values for giant BCs are larger than those for
giant SCs [20] indicates the slower formation of giant BCs.
The exponent β for giant BCs is twice that for giant SCs:
β(BC) = 2β(SC) for λ > 3. However, the formation of giant BCs
is not as slow for 2 < λ < 3 as for λ > 3. For 2 < λ < 3,
the relative size of giant SCs is given by m1 	 〈k〉(1 − u) ∼
〈k〉1/(3−λ), where u is given by Eq. (10) [20]. Therefore, β(BC) =
(λ − 1)β(SC), with their ratio β(BC)/β(SC) being less than 2. The
two exponents β(BC) and β(SC) become equal as λ → 2. In
contrast to such a difference between the exponents β of the
giant SC and BC, the width of the critical regime, characterized
by the exponent ν, is identical for both giant components,
independent of λ.

III. NUMERICAL RESULTS

Numerically, the BCs of a network can be determined by
applying the algorithms of, for example, Refs. [22,23]. To
test the analytic results, we constructed networks for a static
model with system size ranging from N = 2 × 106 to 1.6 ×
107 and λ = 2.4 (μ = 5/7), λ = 3.6 (μ = 5/13), and λ →
∞ (μ = 0). Next, we identified the largest SC and the largest
BC numerically while increasing 〈k〉 [22–24]. We averaged
the relative sizes m2 and m1 of the giant BC and the giant SC,
respectively, over 103 different network realizations.

FIG. 2. (Color online) Relative sizes of a giant BC and giant SC in
ER and scale-free networks. Plots of m1 = S1/N and m2 = S2/N as
functions of the mean degree 〈k〉 in the ER networks and the scale-free
networks with λ = 2.4 are presented. Dotted and solid lines represent
numerical simulation and analytical results from Eqs. (1) and (8) and
the relation m1 = 1 − G(u), respectively. In numerical simulations,
the number of nodes N is 8 × 106 in both networks. The inset shows
the ratio of m2 to m1 in the same networks and in SF networks with
λ = 3.6.

As evident by definition, the size of the largest BC is smaller
than that of the largest SC in all the considered sparse networks;
the size of the largest BC is at most 60% of the largest SC up to
〈k〉 = 2. The trend of the ratio m2/m1 displays a transition at

FIG. 3. (Color online) Finite-size scaling behavior of the relative
size m2 of the largest BC in scale-free networks. Plots of m2N

β
ν

vs �N 1/ν with (a) β = 2, ν = 3 for λ → ∞ (μ = 0) and (b) β =
10/3, ν = 13/3 for λ = 3.6 (μ = 5/13) are presented. (c) Plot of
m2N vs �. Here, � = 〈k〉/〈k〉c − 1. In the insets of (a) and (b),
the curves for m2N

β/ν vs 〈k〉 from different N values intersect at
〈k〉c = 1.00(4) for λ → ∞ in (a) and at 〈k〉c = 0.61(1) for λ = 3.6
in (b). For the case of λ = 2.4 in (c), we used Eq. (9) to compute
〈k〉c given in the inset; this value was used to draw the scaled plot in
the main panel. All the presented results are obtained from numerical
simulations.
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FIG. 4. (Color online) Behaviors of the finite-size scaling function 	(x). The collapsed data are compared with the predicted behavior
	(x) → φ for x → ∞ and 	(x) 	 ψxβ for x → ∞ in Eqs. (20)–(23). (a) For λ → ∞, the scaling variable is x = �N1/3, and the limiting
behaviors of 	(x) with φ = 0.587, ψ = 2, and β = 2 agree with the collapsed data of m2N

2/3. (b) For λ = 3.6, the scaling variable is
x = �N 3/13, and the limiting behaviors of 	(x) with φ = 0.321, ψ = 0.729, and β = 10/3 agree with the collapsed data of m2N

10/13. (c) For
λ = 2.4, the scaling variable is x = �, and the limiting behaviors of 	(x) with φ = 1.111, ψ = 0.203, and β = 7/3 agree with the collapsed
data of m2N .

a nonzero critical point for λ > 3, whereas it is nonzero for all
nonzero 〈k〉 for 2 < λ < 3, as shown in Fig. 2. In this case, even
when 〈k〉 is small, the largest BC and SC are large in scale-free
networks, whereas those of the ER networks are negligible.
This implies that the presence of hubs is advantageous for
forming large BCs and SCs, which is helpful for maintaining
functional activities of the system.

The finite-size scaling behavior of m2 is presented in Fig. 3.
We used the scaling exponents β and ν of Eq. (21) to identify
the critical point 〈k〉c and checked the collapse of the data from
different N values in Figs. 3(a) and 3(b). The critical points,
identified by the intersection of the curves for m2N

β/ν versus
〈k〉, agree with the prediction in Eq. (9). The data collapse
of m2N

β/ν versus �N1/ν is almost perfect, confirming the
finite-size scaling behaviors derived analytically in Sec. II.
For λ = 2.4, 〈k〉c is zero in the limit N → ∞ but nonzero for
finite N , as in Eq. (9). In Fig. 3(c), we use the nonzero critical
point in Eq. (9) to find the scaling behavior of m2 that agrees
with Eq. (19).

We derived analytically the limiting behaviors of the
scaling function 	(x) in Eq. (20); these are compared with
the collapsed data of m2N

β/ν versus �N1/ν for λ > 3 or
versus � for 2 < λ < 3. In Fig. 4, the numerical results
show good agreement with the analytic prediction of the
behavior of the scaling function 	(x) for x → 0 and x → ∞.
Such a good agreement of even coefficients verifies the
assumptions made in the analytic derivation of the largest BC
in Sec. II.

IV. DISCUSSION

The biconnectivity of a network represents the ability of a
system to maintain its functionality in the presence of broken
pathways and is of practical importance in technological and
biological networks. Motivated by the ubiquity of scale-free
topology in real-world systems, we investigated the critical
phenomena of the emergence of giant BCs in scale-free
networks within the framework of the branching process
approach. As in ER networks [10], the giant BC grows slower
than the giant SC in scale-free networks; β(BC) = 2β(SC) for
λ > 3 and β(BC) = (λ − 1)β(SC) for 2 < λ < 3. However, as
λ → 2, the difference between the two β exponents is reduced,
implying that the hub nodes facilitate the formation of the giant
BC as well as the giant SC.

We derived the limiting behaviors of the finite-size scaling
functions for the size of the largest BC and the critical point;
our results agree very well with the numerical results. Our
analytic approach can be extended to the case of (k � 3) com-
ponents. Given the increasing demand for maintaining stable
functionality of technological, social, and biological networks,
our results can be of importance for improving the structural
and functional robustness of numerous complex systems.
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