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Statistical potential in an ideal anyon gas
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We calculate the statistical potentials between particles in an ideal anyon gas arising from the symme-

try property of the wave functions. The statistical potential is known to be purely repulsive for fermions,
and to be purely attractive for bosons. In contrast, the statistical potentials for anyons are found to
behave differently; the statistical potential for quasibosons is not purely attractive, displaying a minimum

at finite interparticle distance. That implies there exists a stable equilibrium interparticle distance be-

tween two quasibosons. The statistical potential for quasifermions behaves similarly to that for fer-
mions. Our result supports that the probability amplitude of finding two anyons at the same space point
is zero.

Recently, two-dimensional electron systems with an
external magnetic field have drawn much attention. This
is mainly due to their essential role in quantum Hall
effects' and their possible relevance to high-temperature
superconductivity. Moreover, these systems contain in-
teresting possibilities for quantum statistics and fraction-
al statistics, which interpolate continuously between bo-
sons and fermions. Anyons, which carry both electric
charges and magnetic-flux tubes in two-dimensional sys-
tems, are good examples of particles that follow fraction-
al statistics.

In general, anyons have very different physical proper-
ties compared with fermions and bosons. For example,
the wave function for two identical bosons is symmetric
under exchange in their positions, and it is antisymmetric
for two identical fermions. But when two anyons are in-
terchanged, the wave function may acquire a complex
phase factor; unlike the case of fermions and bosons, the
change in phase need not be an integral multiple of m.

When we consider a quantum-statistical problem for
an ideal gas, fermions or bosons, we can derive a "ficti-
tious potential" arising from the symmetry property of
the wave function of bosons and fermions, and treat the
quantum mechanical problem classically. The fictitious
potential, which is called the statistical potential, is not a
true interparticle potential, but represents the first quan-
tum correction to the partition function obtained classi-
cally. It is known to be purely attractive for bosons,
while it is purely repulsive for fermions. However, the
statistical potential for anyons has not been studied yet,
even though it could help to understand the physical na-
tures of anyons.

In this Brief Report, we study the statistical potential
for anyons by considering the perturbations from bosons
and fermions. It is found that the statistical potential
perturbed from fermions, called quasifermions, exhibits
behavior similar to that for ordinary fermions. But the
statistical potential for quasibo sons behaves very
differently from that for ordinary bosons. It is not purely
attractive, displaying a minimum at finite interparticle
distance r. This implies there exists a stable equilibrium
interparticle distance between two anyons. The stable in-

where e is the charge of the electron and A is the vector
potential written in the form

A(r)= VO .
277

Here 4 =abc /e is the flux tube with a controlling its
magnitude and 0 denotes the relative angle between the
two electrons.

The Schrodinger equation for the Hamiltonian (1) can
be solved easily by decomposing it into the center-of-mass
and relative-coordinate parts, and by using the gauge
transformation A(r)~ A(r) —V8. Then the wave func-
tion is obtained as

iK R i(n a)+sg (k )a r

iK-Ry
a ~

with the corresponding eigenvalue E =A K /4m
+tri k /m. J (x) is the Bessel function. Here Bose (Fer-
mi) statistics requires that n +a =—I be even (odd), and the
wave function is rewritten as

y eiK ReiloJ (kr )
I

The partition function defined as Z= Tre ~ simply

(4)

terparticle distance r depends on the temperature and
statistics determining the parameter 5. It is worth noting
that we have calculated the statistical potential to leading
order, which corresponds to the limit of high tempera-
ture and low density. That turns out to be possible for
two-particle systems. Therefore, we shall consider a
two-particle anyon system in the following.

Let us begin by defining an anyon system in two spatial
dimensions. We consider a system with two electrons
which interact with external magnetic-flux tubes; except
for this, there is no further interaction between the two
electrons. In this case the nonrelativistic Hamiltonian of
the two-electron system is

2
1 e

p; ——A(r; )
)2m c
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takes the form Z=2AA, T Z, where Z is the partition
function of a single particle in the relative-coordinate
problem, A, z- is the thermal wavelength, and A is the area
of the system. The new partition function Z is explicitly
given by

Z= fdpfd re

a)

f d'p fd'« f'p '
II Jl, .l(«) ll2,

I = —oo

with p =4k. We first integrate out the momentum part
to obtain the statistical potential. The integration of the
momentum part can be performed through the use of re-
lation

f e "J„(2PVx)J„(2yVx)dx

=—I, x exp
1 2Py
a u

p2+ y2

a (6)

Then the partition function is reduced to the form

Z=-,' y f "dxe "I„.
,

(x-),
I = —oo 0

(7) -2 -1
In (x)

where x =mr /2'—=erik, z, a.nd Il,
l

(x) is the
modified Bessel function. Equation (7) was also obtained
by Arovas et al. by using the path-integral technique.

Next, by simple mathematical manipulations, we can
rewrite Eq. (7) as

Z f d2pe —Pp Imfd2& y 2e
—mr 12PRI

2h /= —oo

mr 2

2 A

(b)

which is to be compared with the partition function for
classical systems:

Z= 1
e ~P ~m d re IBU~r

2h

Therefore, the statistical potential v(r) is given by the

e ~'")=2 g e "II) l(x)—
I = —oo

(10)

again with x =mr /A, T.
The next step is to find the allowed values of

~
l —a~.

We take our original particles to have Bose statistics, so
that l is an even number. For quasifermions we take
a=2j+1+5 with ~5~ (1. Then the allowed values of
~l

—a~ are 1+5, 3+5, etc. , and Eq. (10) becomes

"'"'=2e " g I2 +1+5(x)+I2 +1—s(x)
n=0

From Eq. (11) we compute the statistical potential nu-
merically. As shown in Fig. 1(a), the overall behavior is
the same as that of fermions, except that the repulsive po-
tential becomes weaker as 5 increases. When 5=0, Eq.
(11) reduces to the known potential for ordinary fer-
mions:

In (.)

FlG. 1. Statistical potential Pv(x) for (a) quasifermions and
(b) quasibosons vs lnx with x =mr 12Pfi .
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e
—Pv(x) ~

—2x=i —e (12)

For small ~5~ we expand I2„+,+&(x) in powers of 5 and
o ain t e relation

e
—Pv(x) 4

—x 0 I„(x)
Ip +&(x)+

n=0 C1V v=2n+1

(13)

We can see that the terms of first o drs or er in 5 are canceled
, as in t e case of the second virial coefficient. We
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FIG. 2. Statistical potential uia u(x) for (a) quasifermions and
quasibosons vs lnx with x =x =mr, and vs 5.
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tractive as r~O only for bosons, and the cusp-behavior
occurs only for bosons —we may say that our result sup-
ports their arguments. On the other hand, it would be in-
teresting to investigate the behavior of the statistical po-
tential for the case that the Hamiltonian includes a non-
statistical hard-core interaction or other types of nonsta-
tistical potentials to check if the minimum behavior in
the statistical potential does not occur. This subject is
currently under consideration.

In conclusion, we have considered the statistical poten-
tial for anyons, carrying both electric charges and
magnetic-Aux tubes in two dimensions. The statistical
potential for quasifermions exhibits behavior similar to
that of ordinary fermions. For quasibosons, in contrast,

it displays a striking difference: The statistical potential
possesses a minimum at a Snite interparticle distance,
which implies that there exists a stable interparticle dis-
tance between two bosonic anyon particles. The stable
interparticle distance depends on the temperature and
statistics determining the parameter 5.
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