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Here we consider a Kuramoto model (KM) with actively competing interactions. Contrary to a
passively competing interaction case generating two synchronized clusters, actively competing oscil-
lators gather into a single synchronized cluster. Here we investigate the synchronization transition
of the actively competing KM with several types of natural frequency distributions g(ω) using the
mean-field approach. We find in general that the coupling constant K of the ordinary KM is re-
placed by the mean coupling constant 〈K〉 of the active competing system. However, when g(ω) is
flat, the critical behavior of hybrid phase transition changes slightly in the subleading order.

I. INTRODUCTION

Synchronization is a collective phenomenon emerging
in diverse complex systems in the real world. Examples
include the flashing of fireflies, the chirp of the crickets,
the pacemaker cells of the heart, and synchronous neural
activity [1–6]. Globally coupled phase oscillators have
been used to model such synchronizations. The conven-
tional Kuramoto model (KM) is written as

θ̇i = ωi +
K

N

N∑
j=1

sin(θj − θi), (1)

where θ(t) is the phase of the i-th oscillator at time t,
and ωi is its natural frequency following the distribution
g(ω), and K is a coupling constant. When K is small,
each oscillator rotates almost independently with its own
frequency ωi; however, as K is increased, oscillators in-
teract each other, and a synchronized cluster forms on a
macroscopic scale at a transition point Kc.

Inspired by spin glass or neural networks with compet-
ing signs of interactions, generalizations of KM have been
made [7–12]. One most precedent suggested by Daido [8]
is written as

θ̇i = ωi +
1

N

N∑
j=1

Kij sin(θj − θi), (2)

where Kij is of Sherrington-Kirkpatrick type, which is
distributed in a Gaussian form with zero mean. Under
such competing interactions, the possibility of an oscil-
lator glass state was questioned. A critical phenomenon
was found regarding the motion of local fields in the com-
plex plane. It was revealed that the frequency entrain-
ment occurs but the phase-locking does not. The oscil-
lator phases show a diffusive motion and therefore the
initial coherence is always lost in the long time. Discov-
ery of non-exponential relaxation of coherence in super-
critical control parameter regime suggested the presence
of potential glassy oscillators; yet it still remains as an
inconclusive problem [8].
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The authors of Refs. [10, 11] considered simplified KMs
with competing interactions based on nodes instead of
edges. One can immediately notice that two generaliza-
tions are possible: passively (actively) coupled case with
Ki (Kj) placed outside (inside) the summation.

The passively competing KM is written as

θ̇i = ωi +
Ki

N

N∑
j=1

sin(θj − θi). (3)

Ki is placed outside the summation and is given as a mix-
ture of different signs. In this case the synchronization
order parameter is defined as that of the ordinary KM,

Z(t) ≡ R(t)eiΨ(t) =
1

N

∑
j

eiθj . (4)

The oscillators are decoupled to each other but are cou-
pled instead to the effective field of strength KiR.

θ̇i = ωi +KiR sin(Ψ− θi). (5)

Depending on the sign of Ki, the stability of an oscilla-
tor at the force-balancing position is reversed. Oscillators
with positive coupling constants are attractive to the ef-
fective field, while the oscillators with negative coupling
constants are repulsive. Recently, the KMs with passively
competing interactions were extensively investigated; for
the cases with g(ω) following the Lorentzian [10] and the
uniform [12] distributions. In these cases the oscillators
are clustered into two groups separated roughly by an
angle π. They can be either static or traveling.

The actively competing KM is written as

θ̇i = ωi +
1

N

N∑
j=1

Kj sin(θj − θi), (6)

where Kj can have either a positive or negative value
and follows the distribution f(K). The natural frequency
distribution g(ω) is assumed to be symmetric about zero.
In this interaction form, each oscillator j actively attracts
(Kj > 0) or repulses (Kj < 0) an oscillator i. In this
case, a previous study [11] showed that the {Kj} can be
roughly replaced by the effective coupling constant 〈K〉
when g(ω) is unimodal.
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In this paper, we extend the previous study to the
cases of the bimodal and uniform distributions of g(ω).
For these cases, the synchronization transitions are first-
order and hybrid transitions [1, 12, 13], respectively. Here
a hybrid phase transition means the transition in which
properties of second-order and first-order transitions oc-
cur at the same transition point. The hybrid phase tran-
sition has been recently studied in k-core percolation
models [19–22] and synchronization models [12–17]. We
find that the actively competing KMs with the bimodal
and uniform distributions of g(ω) also behave similarly
to the corresponding classical KM but the role of the
coupling constant K is replaced by the effective coupling
constant 〈K〉. Interestingly, for the uniform distribution,
we find an abnormal subleading hybrid scaling behavior,
in addition to the result obtained by Pazó in Ref. [13].

This paper is organized as follows: In Sec. II, we intro-
duce the order parameter of the actively competing KM.
In Sec. III, the self-consisteny equations of the KMs with
the bimodal and the uniform distributions are derived.
The critical exponents associated with the order param-
eter in leading and subleading orders are obtained. The
final section is devoted to the summary.

II. THE ACTIVELY COMPETING
SYNCHRONIZATION

In the actively competing case, the order parameter is
given as

W (t) ≡ S(t)eiΦ(t) ≡ 1

N

N∑
j=1

Kje
iθj(t). (7)

Notice the difference with the conventional synchroniza-
tion order parameter Z(t) in that it is weighted by local
coupling constants. In contrast to the passively compet-
ing model, where the Ki causes a sign difference, the
actively competing oscillators are under the same mean
field S(t).

θ̇i = ωi + S(t) sin(Φ(t)− θi). (8)

The system shows a synchronization transition from an
incoherent to a coherent state as in the ordinary KM;
group separation of π or traveling wave state does not
occur.

III. THE SELF-CONSISTENCY EQUATION

The self-consistency equation of the actively competing
model is written as

S =

∫
dKf(K)

∫
dωg(ω)K

√
1−

(ω
S

)2

= 〈K〉
∫ S

−S
dωg(ω)

√
1−

(ω
S

)2

. (9)

Integrating the above equation after the series expansion
of g(ω) at zero yields:

S =
π

2
g(0)〈K〉S+

π

16
g(2)(0)〈K〉S3+

π

384
g(4)(0)〈K〉S5+· · · ,

(10)
where g(2)(0) and g(4)(0) denote the second and the
fourth derivatives of g(ω) with respect to ω at ω = 0.

A. Unimodal

For a unimodal natural frequency distribution,
g(2)(0) < 0. Thus,

S ∼
(
〈K〉 − 〈K〉c

)1/2
. (11)

The critical exponent becomes β = 1/2 and the transition
point is determined as

〈K〉c =
2

πg(0)
. (12)

B. Bimodal

For a bimodal natural frequency distribution, g(2)(0) >
0 and g(4)(0) < 0. The transition is first-order and a
hysteresis curve exists. There exist two transition points
〈K〉fc and 〈K〉bc given as

〈K〉fc =
2

πg(0)
(13)

〈K〉bc =
2

πg(0)

1

1 + 3g(2)(0)2

4g(0)|g(4)(0)|

(14)

where 〈K〉fc > 〈K〉bc. The jump sizes at 〈K〉bc and 〈K〉fc
are determined as

Sbc =
Sfc√

2
=

√
12g(2)(0)

|g(4)(0)|
. (15)

C. Uniform

Let us consider a uniform distribution of g(ω) ranging
[−γ, γ]. In this case, the transition is hybrid. The self
consistency equation can be solved exactly as follows:

S =
〈K〉
2γ

∫ γ

−γ
dω

√
1−

(ω
S

)2

=
〈K〉S

2γ

[
arcsin

γ

S
+
γ

S

√
1−

( γ
S

)2
]
. (16)

The transition point occurs when Sc = γ and is deter-
mined as

〈K〉c =
4γ

π
=

2

πg(0)
. (17)



3

FIG. 1. Plots of the order parameter R of the ordinary KM (a) and the order parameter S of the KM with the actively
competing coupling constant (b). Both cases take the uniform distribution of g(ω) in the range [−γ, γ]. Data points are
obtained by simulations for N = 25600,K1 = −0.5,K2 = 1, and γ = 0.2, and where the distribution of coupling constants is set
f(K) = (1− p)δ(K −K1) + pδ(K −K2), for simplicity. The mixing fraction p of K2 oscillators linearly interpolates the mean
coupling 〈K〉 of the system between K1 and K2. The data points are obtained by taking average over the last ten percent of
the total runtime t = 105s. Both order parameters show a discontinuous jump at the transition point 〈K〉c = 4γ/π = 0.255.

At a postcritical 〈K〉 = 〈K〉c + δ〈K〉, let S =
〈K〉S

2γ

∫ θm
−θm

1+cos 2θ
2 dθ where θm ≡ arcsin γ

S ≡
π
2 −δθ. The

self consistency equation yields

1 =
〈K〉c + δ〈K〉

2γ

[
π

2
− δθ +

1

2
sin(π − 2δθ)

]
=
(
〈K〉c + δ〈K〉

) [ 1

〈K〉c
− δθ

2γ
+

1

4γ

(
2δθ − (2δθ)3

3!

)]
=
(
〈K〉c + δ〈K〉

) [ 1

〈K〉c
− (δθ)3

3γ

]
, (18)

up to the lowest order in δθ and thus

δ〈K〉 =
〈K〉2c
3γ

(δθ)3. (19)

From γ = S sin θm, we have

γ = (Sc + δS) sin
(π

2
− δθ

)
= (γ + δS)

(
1− (δθ)2

2

)
(20)

and therefore,

δS =
γ

2
(δθ)2

=
γ

2

(
3π2

16γ

)2/3

δ〈K〉2/3. (21)

Note that the leading order calculation gives the critical
exponent β = 2/3. We stress that β is a non-integer.
Therefore the synchronization transition of the actively
competing KM with uniform frequency distribution falls
into the category of hybrid phase transition.

Up to the next order we find,

δ〈K〉 =
〈K〉2c
3γ

(δθ)3 − 〈K〉
2
c

15γ
(δθ)5 +O(δθ)6 (22)

and reversing the above series gives

δθ =

(
3γ

〈K〉2c
δ〈K〉

)1/3

+
γ

5〈K〉2c
δ〈K〉. (23)

Therefore,

δS =
γ(1− cos δθ)

cos δθ
=
γ

2
(δθ)2 +

5γ

24
(δθ)4

=

(
9π4γ

2048

)1/3

δ〈K〉2/3 +
289π2

5760

(
3π2

16γ

)1/3

δ〈K〉4/3.

(24)

Thus the subleading term gives a different exponent β′ =
4/3 for the order parameter S.

Finally we consider the conventional order parameter
R =

∣∣ 1
N

∑
j e
iθj
∣∣ in the actively competing KM. R is

obtained as

R =

∫
dωg(ω)

√
1−

(ω
S

)2

. (25)

The two order parameters are related to each other by

S = 〈K〉R (26)

as long as the coupling constant K and the natural fre-
quency ω are uncorrelated. Above the transition point,

δS = δ〈K〉Rc + 〈K〉cδR+ higher order. (27)
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FIG. 2. (a) Plot of δS versus δ〈K〉. The black dashed line denotes the leading order δS of Eq. (24) and the critical exponent
β = 2/3 is clearly noticed. The red solid line counts up to the next leading order of Eq. (24). Data points are obtained by
simulations with N = 25600,K1 = −0.5,K2 = 1, and γ = 0.2. We used time averaged values during the last ten percent of
the total runtime t = 105s. For larger values of 〈K〉 beyond the critical point, a small deviation is noticed. (b) Plot of the
subleading correction values versus δ〈K〉 to check the exponent of the subleading order β′ = 4/3. Red dashed line denotes the
subleading correction for the actively competing model (24). The dotted green line with slope one is drawn for comparison,
which represents the subleading correction for the Pazo model.

FIG. 3. (a) Plot of δR versus δ〈K〉. Up to the sublinear leading order, scaling of δR is governed by the same hybrid critical
exponent β = 2/3. The black dashed line represents the leading order of Eq. (28), while the red solid line counts up to the next
leading order of Eq. (28). (b) Plot of the magnitudes of the subleading correction values versus δ〈K〉 to check the exponent of
the subleading order β′ = 1. The dashed red line denotes the absolute value of the subleading correction of Eq. (28), which is
linear in δ〈K〉. The data points are obtained by the simulation.

Using Eqs. (24) and (27), we find that

δR =
γ

2〈K〉c

(
〈K〉2c
3γ

)2/3

δ〈K〉2/3 − Rc
〈K〉c

δ〈K〉

=
π

8

(
3π2

16γ

)2/3

δ〈K〉2/3 − π2

16γ
δ〈K〉, (28)

where we used Rc = π/4 = Sc/〈K〉c. This scaling of
δR is the same as the one obtained by Pazó [13], except
that the coupling constant K has been replaced by the
mean coupling 〈K〉. We remark that from Eq. (27), we
observe that the scalings of S and R are of the same

leading order. However, in contrast to our result of the
critical exponent β′ = 4/3 for the order parameter S, the
subleading term had given a noncritical exponent β′ = 1
for the order parameter R in Ref. [13].

IV. SUMMARY

We investigated the synchronization transition of the
Kuramoto model (KM) with actively competing interac-
tions, and compared the result with that of the ordinary
KM. A common feature between the two results is that
the transition point 〈K〉c of the mean coupling constant
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of the competing mixture plays the same role of Kc of
the ordinary KM. We verified that this is generally valid
for the unimodal, bimodal and uniform natural frequency
distributions. Furthermore, the critical exponents of con-
tinuous transition β = 1/2 and hybrid transition β = 2/3
remains unchanged up to the leading order. Unexpect-
edly, however, we have found another hybrid critical ex-
ponent β′ = 4/3 for δS in the subleading order for the
actively competing KM with uniform frequency distribu-
tion, different from β′ = 1 for δR. This suggests that

further interesting features are expected from the hybrid
phase transition of the actively competing generalization
of the KM.
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