
VOLUME 87, NUMBER 27 P H Y S I C A L R E V I E W L E T T E R S 31 DECEMBER 2001

278701-1
Universal Behavior of Load Distribution in Scale-Free Networks

K.-I. Goh, B. Kahng, and D. Kim
School of Physics and Center for Theoretical Physics, Seoul National University, Seoul 151-747, Korea

(Received 26 June 2001; published 12 December 2001)

We study a problem of data packet transport in scale-free networks whose degree distribution follows
a power law with the exponent g. Load, or “betweenness centrality,” of a vertex is the accumulated
total number of data packets passing through that vertex when every pair of vertices sends and receives
a data packet along the shortest path connecting the pair. It is found that the load distribution follows a
power law with the exponent d � 2.2�1�, insensitive to different values of g in the range, 2 , g # 3,
and different mean degrees, which is valid for both undirected and directed cases. Thus, we conjecture
that the load exponent is a universal quantity to characterize scale-free networks.
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Complex systems consist of many constituents such as
individuals, substrates, and companies in social, biological,
and economic systems, respectively, showing cooperative
phenomena between constituents through diverse interac-
tions and adaptations to the pattern they create [1,2]. In-
teractions may be described in terms of graphs, consisting
of vertices and edges, where vertices (edges) represent the
constituents (their interactions). This approach was initi-
ated by Erdös and Rényi (ER) [3]. In the ER model, the
number of vertices is fixed, while edges connecting one
vertex to another occur randomly with certain probability.
However, the ER model is too random to describe real
complex systems. Recently, Watts and Strogatz (WS) [4]
introduced a small-world network, where a fraction of
edges on a regular lattice is rewired with probability pWS
to other vertices. More recently, Barabási and Albert (BA)
[5–7] introduced an evolving network where the number
of vertices N increases linearly with time rather than fixed,
and a newly introduced vertex is connected to m already
existing vertices, following the so-called preferential at-
tachment (PA) rule. When the number of edges k incident
upon a vertex is called the degree of the vertex, the PA rule
means that the probability for the new vertex to connect to
an already existing vertex is proportional to the degree k
of the selected vertex. Then the degree distribution PD�k�
follows a power law PD�k� � k2g with g � 3 for the BA
model, while for the ER and WS models, it follows a Pois-
son distribution. Networks whose degree distribution fol-
lows a power law, called scale-free (SF) networks [8], are
ubiquitous in real-world networks such as the World Wide
Web [9–11], the Internet [12–14], the citation network
[15] and the author collaboration network of scientific pa-
pers [16–18], and the metabolic networks in biological or-
ganisms [19]. On the other hand, there also exist random
networks such as the actor network whose degree distribu-
tion follows a power law but has a sharp cutoff in its tail
[20]. Thus, it has been proposed that the degree distribu-
tion can be used to classify a variety of diverse real-world
networks [20]. In SF networks, one may wonder if the ex-
ponent g is universal in analogy with the theory of critical
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phenomena; however, the exponent g turns out to be sen-
sitive to the detail of network structure. Thus, a universal
quantity for SF networks is yet to be found. From a theo-
retical viewpoint, it is important to find a universal quantity
for SF networks, which is the purpose of this Letter.

A common feature between the WS and SF networks
would be the small-world property that the mean separa-
tion between two vertices, averaged over all pairs of ver-
tices (called the diameter hereafter), is shorter than that of
a regular lattice. The small-world property in SF networks
results from the presence of a few vertices with high de-
gree. In particular, the hub, the vertex whose degree is the
largest, plays a dominant role in reducing the diameter of
the system. Diameters of many complex networks in the
real world are small, allowing objects transmitted through
the network such as neural spikes on neural network, or
data packets on the Internet, to travel from one vertex to
another quickly along the shortest path. The shortest paths
are indeed of relevance to network transport properties.
When a data packet is sent from one vertex to another
through SF networks such as the Internet, it is efficient to
take a road along the shortest paths between the two. Then
vertices with higher degrees should be heavily loaded and
jammed by lots of data packets passing along the shortest
paths. To prevent such Internet traffic congestions and al-
low data packets to travel in a free-flow state, one has to
enhance the capacity, the rate of data transmission, of each
vertex to the extent that the capacity of each vertex is large
enough to handle appropriately defined “load.”

In this Letter, we define and study such a quantity, which
we simply call load, to characterize the transport dynamics
in SF networks. In fact, this quantity turns out to be equiva-
lent to “betweenness centrality” which was introduced in a
social network to quantify how much power is centralized
to people in social networks [17,21]. While it has been
noted that the betweenness centrality has a long tail [22],
here we focus our attention on its probability distribution
for various SF networks with different degree exponents.
Thus knowing the distribution of such a quantity enables
us to not only estimate the capacity of each vertex needed
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for a free-flow state, but also to understand the power dis-
tribution in social networks, which is another purpose of
this Letter.

To be specific, we suppose that a data packet is sent
from a vertex i to j, for every ordered pair of vertices
�i, j�. For a given pair �i, j�, it is transmitted along the
shortest path between them. If there exist more than one
shortest paths, the data packet would encounter one or
more branching points. In this case, we assume that the
data packet is divided evenly by the number of branches at
each branching point as it travels. Then we define the load
�k at a vertex k as the total amount of data packets passing
through that vertex k when all pairs of vertices send and
receive one unit of data packet between them. Here, we
do not take into account the time delay of data transfer at
each vertex or edge, so that all data are delivered in a unit
time, regardless of the distance between any two vertices.

We find numerically that the load distribution PL���
follows a power law PL��� � �2d. Moreover, the expo-
nent d � 2.2 we obtained is insensitive to the detail of
the SF network structure as long as the degree exponent
is in the range 2 , g # 3. The SF networks we used
do not permit the rewiring process, and the number of
vertices is linearly proportional to that of edges. When
g . 3, d increases as g increases, however. The univer-
sal behavior is valid for directed networks as well, when
2 , �gin, gout� # 3. Since the degree exponents in most
of the real-world SF networks satisfy 2 , g # 3, the uni-
versal behavior is interesting.

We construct a couple of classes of undirected SF net-
works both in the static and evolving ways. Each class of
networks includes a control parameter, according to which
the degree exponent is determined. First, we deal with the
static case. There are N vertices in the system from the be-
ginning, which are indexed by an integer i (i � 1, . . . , N ).
We assign the weight pi � i2a to each vertex, where a is
a control parameter in �0, 1�. Next, we select two different
vertices �i,j� with probabilities equal to the normalized
weights, pi�

P
k pk and pj�

P
k pk, respectively, and add

an edge between them unless one exists already. This pro-
cess is repeated until mN edges are made in the system.
Then the mean degree is 2m. Since edges are connected to
a vertex with frequency proportional to the weight of that
vertex, the degree at that vertex is given as

kiP
j kj

�
�1 2 a�
N12aia

, (1)

where
P

j kj � 2mN . Then it follows that the degree dis-
tribution follows the power law, PD�k� � k2g , where g

is given by

g � �1 1 a��a . (2)

Thus, adjusting the parameter a in [0,1), we can obtain
various values of the exponent g in the range 2 , g , `.

Once a SF network is constructed, we select an ordered
pair of vertices �i, j� on the network and identify the short-
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est path(s) between them and measure the load on each
vertex along the shortest path using the modified version
of the breath-first search algorithm introduced by Newman
[17]. It is found numerically that the load �i at vertex i
follows the formula

�iP
j �j

�
1

N12bib
, (3)

with b � 0.80�5�. This value of b is insensitive to differ-
ent values of the exponent g in the range 2 , g # 3, as
shown in the inset in Fig. 1. The total load

P
j �j scales

as �N2 logN . This is because there are N2 pairs of ver-
tices in the system and the sum of the load contributed by
each pair of vertices is equal to the distance between the
two vertices, which is proportional to logN . Therefore, the
load �i at a vertex i is given as

�i � �N logN� �N�i�b . (4)

From Eq. (4), it follows that the load distribution scales as
PL��� � �2d, with d � 1 1 1�b � 2.2�1�, independent
of g in the range 2 , g # 3. A direct measure of PL���
also gives d � 2.2�1� as shown in Fig. 1. We also check d

for different mean degrees m � 2, 4, and 6, but we obtain
the same value, d � 2.2�1�. Thus, we conclude that the
exponent d is a generic quantity for this network. Note that
Eqs. (1) and (4) combined give a scaling relation between
the load and the degree for this network as

� � k�g21���d21�. (5)

Thus, when and only when g � d, the load at each vertex
is directly proportional to its degree. Otherwise, it scales
nonlinearly. On the other hand, for g . 3, the exponent
d depends on the exponent g in a way that it increases
as g increases. Eventually, the load distribution decays

FIG. 1. Plot of the load distribution PL��� versus � for various
g � 2.2 (±), 2.5 (�), 3.0 (¶), 4.0 (3), and ` (�) in double
logarithmic scales. The linear fit (solid line) has a slope 22.2.
Data for g . 3.0 are shifted vertically for clearance. Dotted
lines are guides to the eye. Simulations are performed for N �
10 000 and m � 2 and all data points are log-binned, averaged
over ten configurations. Inset: Plot of the normalized load
�i�

P
k �k versus vertex index i in double logarithmic scales for

various g � 2.2 (±), 2.5 (�), and 3.0 (¶).
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exponentially for g � ` as shown in Fig. 1. Thus, the
transport properties of the SF networks with g . 3 are
fundamentally different from those with 2 , g # 3. This
is probably due to the fact that for g . 3, the second
moment of PD�k� exists, while for g # 3, it does not.

We examine the system-size dependent behavior of the
load at the hub, �h, for the static model. According
to Eq. (4), �h behaves as �h � N1.8 logN in the range
2 , g # 3, while for g . 3, �h increases with N but at
a much slower rate than that for 2 , g # 3 as shown in
Fig. 2. That implies that the shortest pathways between
two vertices become diversified, and they do not necessar-
ily pass through the hub for g . 3. That may be related
to the result that epidemic threshold is null in the range
2 , g # 3, while it is finite for g . 3 in SF networks,
because there exist many other shortest paths not passing
through the hub for g . 3, so that the infection of the hub
does not always lead to the infection of the entire system.
Thus, epidemic threshold is finite for g . 3 [24].

Next, we generate other SF networks in an evolving way,
using the methods proposed by Kumar et al. [23] and by
Dorogovtsev et al. [7]. In these cases, we also find the
same results as in the case of static models.

We also consider the case of directed SF network. The
directed SF networks are generated following the static
rule. In this case, we assign two weights pi � i2aout

and qi � i2ain (i � 1, . . . , N) to each vertex for outgo-
ing and incoming edges, respectively. Both control pa-
rameters aout and ain are in the interval �0, 1�. Then
two different vertices �i, j� are selected with probabilities,
pi�

P
k pk and qj�

P
k qk , respectively, and an edge from

the vertex i to j is created with an arrow, i ! j. The
SF networks generated in this way show the power law in
both outgoing and incoming degree distributions with the
exponents gout and gin, respectively. They are given as
gout � �1 1 aout��aout and gin � �1 1 ain��ain. Thus,
choosing various values of aout and ain, we can determine

FIG. 2. Plot of the system-size dependence of the load at the
hub versus system size N for various g � 2.2 (±), 2.5 (�),
3.0 (¶), 4.0 (3), and ` (�). The solid line is N1.8 logN and
dotted lines have slopes 1.70 and 1.25, respectively, from top
to bottom. Simulations are performed for m � 2 and all data
points are averaged over ten configurations.
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different exponents gout and gin. Following the same steps
as for the undirected case, we obtain the load distribution
on the directed SF networks. The load exponent d obtained
is �2.3�1� as shown in Fig. 3, consistent with the one for
the undirected case, also being independent of gout and gin
in 2 , �gout, gin� # 3. Therefore, we conjecture that the
load exponent is a universal value for both the undirected
and directed cases.

To see if such universal value of d appears in the real-
world network, we analyzed the coauthorship network,
where nodes represent scientists and they are connected
if they wrote a paper together. The data are collected
in the field of the neuroscience, published in the period
1991–1998 [18]. This network is appropriate to test the
load, i.e., the betweenness centrality distribution, because
it does not include a rewiring process as it evolves, and
its degree exponent g � 2.2 lies in the range 2 , g # 3.
As shown in Fig. 4, the load distribution follows a power
law with the exponent d � 2.2, in good agreement with
the value obtained in the previous models.

We also check the load distribution for the case when
data travel with constant speed, so that the time delay of
data transfer is proportional to the distance between two
vertices. We find that the time delay effect does not change
the load distribution and the conclusion of this work. The
reason of this result is that when the time delay is ac-
counted, load at each vertex is reduced roughly by a fac-
tor logN , proportional to the diameter, which is negligible
compared with the load without the time delay estimated
to be �N1.8 logN in Eq. (4). Because of this small-world
property, the universal behavior remains unchanged under
the time delay of data transmission.

Finally, we mention the load distribution of the small-
world network of WS which is not scale-free. It is found
that its load distribution does not obey a power law but
shows a combined behavior of two Poisson-type decays
resulting from short-ranged and long-ranged connections,
respectively, as shown in Fig. 5. We also find the average

FIG. 3. Plot of the load distribution PL��� versus � for the
directed case. The data are obtained for �gin, gout� � (2.1, 2.3)
(¶), (2.1, 2.7) (1), (2.5, 2.7) (�), and (2.5, 2.2) (3). The fitted
line has a slope 22.3. All data points are log-binned.
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FIG. 4. Plot of the degree distribution PD�k� (¶) and the load
distribution PL��� (±) for a real-world network, the coauthorship
network. The number of vertices (different authors) are 205 202.
Least-squares fit (solid line) has a slope 22.2. All data points
are log-binned.

load, �̄�pWS� 	 �1�N�
P

i �i�pWS�, as a function of the
rewiring probability pWS decays rapidly with increasing
pWS, behaving similar to the diameter in the WS model,
as shown in the inset of Fig. 5.

In conclusion, we have considered a problem of data
packet transport on scale-free networks generated accord-
ing to preferential attachment rules and introduced a phys-
ical quantity, load ��i� at each vertex. We found that the
load distribution follows a power law, PL��� � �2d , with
the exponent d � 2.2�1�, which turns out to be insensi-
tive to the degree exponent in the range �2, 3
 when the
rewiring process is not included and the networks are of un-
accelerated growth. Moreover, it is also the same for both
directed and undirected cases within our numerical uncer-
tainties. Therefore, we conjecture that the load exponent is
a generic quantity to characterize scale-free networks. The
universal behavior we found may have interesting implica-
tions to the interplay of SF network structure and dynam-

FIG. 5. Plot of the load distribution PL��� versus load � for
the small-world network. Simulations are performed for system
size N � 1000, and average degree �k� � 10, and the rewiring
probability pWS � 0.01, averaged over 500 configurations. In-
set: Plot of the average load (¶), diameter (1), clustering co-
efficient (�) versus the rewiring probability pWS. All the data
are normalized by the corresponding values at pWS � 0. Dotted
lines are guides to the eye.
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ics. For g . 3, however, the load exponent d increases as
the degree exponent g increases, and eventually the load
distribution decays exponentially as g ! `. It would be
interesting to examine the robustness of the universal be-
havior of the load distribution under some modifications of
generating rules for SF networks such as the rewiring pro-
cess and acceleration growth, which, however, is beyond
the scope of the current study.
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