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In complex systems, responses to small perturbations are too diverse to definitely predict how much
they would be, and then such diverse responses can be predicted in a probabilistic way. Here we study
such a problem in scale-free networks, for example, the diameter changes by the deletion of a single
vertex for various in silico and real-world scale-free networks. We find that the diameter changes are
indeed diverse and their distribution exhibits an algebraic decay with an exponent ¢ asymptotically.
Interestingly, the exponent ¢ is robust as ¢ =~ 2.2(1) for most scale-free networks and insensitive to the
degree exponents vy as long as 2 <y = 3. However, there is another type with ¢ = 1.7(1) and its
examples include the Internet and its related in silico model.

DOI: 10.1103/PhysRevLett.91.058701

A complex system consists of many constituents, gen-
erating emerging behavior through diverse interactions
[1,2]. One of the powerful ways of examining the intrin-
sic nature of a complex system is to observe how such
emerging patterns change by the small perturbation ap-
plied to the system. In complex systems, such a change or
response is so sensitive to the details of the perturbation
that it is extremely diverse. In such a case, it is not
adequate to predict definitely how much the change would
be. Recently, Parisi argued [3] that the prediction for the
responses to small perturbations in complex systems can
be made in a probabilistic way. He showed examples of
protein structures in biological systems and spin glasses
in physical systems. In the case of proteins, subject to
small external perturbations such as the change in pH or
the substitution of a single amino acid, they would fold to
a completely different 3D structure but with practically
the same free energy. In the case of the disordered mag-
netic systems, each spin responds to a slowly varying
external field by changing its orientation, forming a series
of bursts, known as Barkhausen noise [4]. The number of
spin bursts depends on the disorder strength of the system,
following a power-law distribution at a critical strength of
disorder. The prediction of the number of spin bursts in
this case can only be probabilistic. The stock market is
another example of complex systems. Stock prices are
determined as a result of the complicated interplay be-
tween numerous investors, and the price changes were
also found to exhibit a power-law distribution [5]. All
these examples aptly illustrate how the concept of prob-
abilistic prediction may apply as a new paradigm in
modern science. Other examples can also be found in
fields as diverse as meteorology and geology [6].

Recently, there have been many works which describe
complex systems in terms of graphs [7,8], where vertices
represent constituents and edges interactions between
constituents. An interesting feature emerging in such
complex networks is the emergence of a power-law be-
havior in the degree distribution, P4(k) ~ k=7 [9], where
the degree k is the number of edges incident upon a given
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vertex. Such complex networks are called scale-free (SF)
networks.

In this Letter, we study how SF networks respond to
small perturbations and check if the concept of proba-
bilistic prediction can be applied. For this purpose, we
investigate a simple problem of diameter change when a
single vertex is removed from the system. Diameter,
defined as the average distance between every pair of
vertices in a network, is a simple yet fundamental quan-
tity of SF networks to characterize the small-world nature
and can be thought of as a measure reflecting the effi-
ciency of a network. Our main interest is how much the
efficiency of a network would be affected by the removal
of a single vertex. When a vertex is removed, each pair of
remaining vertices whose shortest pathway had passed
through the removed vertex should find detours, resulting
in the rearrangement of shortest pathways over the net-
work. Thus, the diameter change occurs in a collective
manner. From extensive numerical calculations for a
number of SF network models and real-world examples,
we find that the diameter changes indeed are very diverse
and crucially depend on the degree of the removed vertex.
When a vertex with a small number of connections is
removed, the diameter changes little. However, when a
vertex with a large number of connections is removed, the
diameter change is drastic, exhibiting a power-law dis-
tribution with an exponent ¢,

P(A) ~ A7, ey

for large A, where A is the dimensionless relative diame-
ter change defined as the diameter change caused by the
removal of a certain vertex divided by the original di-
ameter before the removal, and P.(A) is its distribution.
Moreover, the exponent { turns out to be robust for
various SF networks, insensitive to the degree exponent
yfor2 <y =3.

To be specific, we consider an undirected SF network
with a finite number of vertices N and measure the
diameter of the network. Note that we limit our interest
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to undirected networks only in this work. Next, we re-
move a certain vertex i and measure the diameter d; of the
rest of the network. Measuring a dimensionless quantity
A; = (d; — dy)/d, for all i, where d, is the diameter of
the original unperturbed network, we obtain the distri-
bution of A for the network. Note that our case is different
from the previous study of the robustness of SF networks
[10,11] where vertices are removed successively. In our
case, on the other hand, only a single vertex is removed
each time. When a certain vertex is removed, the network
may disintegrate into more than one cluster. In such cases,
d; is calculated only within the largest cluster. The di-
ameter can be measured via a simple breadth-first search
algorithm. To obtain the distribution of the diameter
changes, we need computation time of order O(N?3).

To look into more details, we consider the static model
[12]. It is constructed by connecting mN pairs of vertices
i and j with probability proportional to (ij)~¢, where N is
the vertex number and « is a parameter. We use m = 2. Its
degree distribution follows a power law P,(k) ~ k=7 with
v = 1 + 1/a. Thus, tuning the parameter « in [0, 1), we
obtain a continuous spectrum of the exponent y in the
range 2 <y < 00,

The diameter change A; by the removal of a certain
vertex i in such SF networks can be positive or negative,
and the histogram of the diameter changes is highly
centralized around A = 0 (Fig. 1). However, it exhibits
a fat tail for A > 0 (the inset in Fig. 1). For the static
model with y = 3, for example, the case of small diame-
ter changes in the range |A| <2 X 10™* occurs with
frequency as high as 96%. Thus, the effect of a vertex
removal usually is negligible as a whole, which is man-
ifested by the exponentially bounded fluctuations of the
diameter around its original value. We estimate the N
dependence of such small diameter changes in a mean-
field-type approach. It is known that the diameter d
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FIG. 1. Normalized histogram of the diameter changes for

the static model with y = 3 and N = 10*, averaged over ten
configurations. Horizontal range is truncated for clearance, but
runs up to 2 X 1072, Inset: Plot of P.(A) in log-log scale for
A > 0. The dashed line is a fit line having a slope —2.2. Data
points are logarithmically binned.
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depends on the number of vertices as dy ~InN for
a random graph and dy~InN/InlnN [13] for the
Barabasi- Albert model [9] with y = 3. When a vertex is
removed, the diameter may be reduced as d ~ In(N — 1)
or d~In(N —1)/Inln(N — 1), both leading to A =
—1/NInN for large N. Thus, when N = 10% A~
O(1073), which is comparable to numerical values of
the central part in Fig. 1. On the other hand, substantial
(about 4%) vertices have a serious impact on the system’s
efficiency and they indeed contribute to the positive tail of
the histogram, showing the power-law behavior, Eq. (1).
We find that such large diameter changes are due mainly
to the removal of a vertex with large degree. This feature
is reminiscent of the percolation problems on the SF net-
works [14,15].

Let us investigate the power-law behavior for large A in
details. The exponent / seems to be robust as ¢ = 2.2(1)
as long as 2 <y = 3 for the static model as shown in
Fig. 2. Similar behaviors are found in other model net-
works (ii)—(vii) listed in Table I. These include the SF
networks showing nontrivial degree-degree correlations
[26]. For y > 3, on the other hand, as 7y increases, the
power-law behavior sets in only for larger values of A and
the exponent ¢ increases with . Eventually, the diameter
change distribution for the Erdos-Rényi random net-
works decays exponentially as shown in Fig. 2.

To see such universal behavior of { in the real world, we
consider a couple of real-world networks, the protein
interaction networks (PIN) and the Internet. For the
PIN of the yeast Saccharomyces cerevisiae [23], we also
find a power law in the diameter change distribution with
an exponent { = 2.3(1) (Fig. 3), consistent with the one
obtained for various model networks, including the one
proposed as its own in silico model (vii) [22].
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FIG. 2. The diameter change distribution P.(A) for the static
model with y = 2.2 (), 2.4 (<), 2.6 (V), 2.8 (A), 3.0 (O), and
4.0 (+), and the Erd6s-Rényi model (X). The data, obtained for
N = 10* and averaged over ten configurations. The two data
sets (+, X) are shifted vertically for comparison. The dashed
line having a slope —2.2 is drawn for the eye. Note that the
deviations from the straight line at the fat tail are due to the
generic finite-size effects for the SF networks with y <3 [16].
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TABLE L

the degree exponent vy, the diameter change exponent ¢, and the betweenness centrality exponent n [17].

Summary of the results for various SF networks. Tabulated for each network are the system size N, the mean degree (k),

System N (k) vy I n Ref.
(i) Static model 10* 4 2.2-3.0 2.2(1) 2.2(1) [12]
(ii) Barabasi-Albert model 104 4 2.2-3.0 2.2(1) 2.2(1) 9]
(>iii) Copying model 10* 4 2.2-3.0 2.2(1) 2.2(1) [18]
(iv) Fitness model 104 4 2.25 2.2(1) 2.2(1) [19]
(v) Accelerated-growth model 10* O@1) 3.0(D 2.2(1) 2.2(1) [20]
(vi) Huberman-Adamic model 10* 0@1) 3.0(1) 2.2(1) 2.2(1) [21]
(vii) Protein interaction network model 10* O(1) e 2.2(1) 2.2(1) [22]
(viii) Protein interaction network of the yeast S. cerevisiae 5662 6.1 3.2(2) 2.3(1) 2.3(1) [23]
(ix) Internet at the autonomous systems level 6474, 12058 ~4 2.1(1) 1.7(1) 2.0(1) [24]
(x) Adaptation model ~6500 O(1) 2.1 1.7(1) 2.0(1) [25]

For the Internet at the autonomous systems level [24],
the diameter change distribution again follows a power
law, however, with a different exponent ¢ = 1.7(1)
(Fig. 4). The smaller exponent { indicates that the effect
of the removal of vertices contributing to the tail of the
distribution is much more severe than the previous cases
with { = 2.2 [(i)—(viii) in Table I]. To confirm the novel
value of { for the Internet, we perform the same calcu-
lations for its in silico model, called the adaptation model
[25], and indeed obtain ¢ = 1.7 for it, too. The two
different behaviors of the diameter change distribution
are rooted from distinct topological features of shortest
pathways of each case, which will be discussed later.

Recently, it was proposed that the SF networks with
2 <y =3 can be classified into two classes [12,17],
following the power-law behavior of the betweenness
centrality (BC) distribution [27,28]. The BC g; of a vertex
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FIG. 3. The diameter change distribution P_(A) for the PIN
of the yeast S. cerevisiae. The slope of the fit line (dashed) is
—2.3, drawn for the eye. Upper inset: Plot of A(g) vs. g. The
slope of the straight line is 1.1, drawn for the eye. Lower inset:
The largest-cluster-size change distribution P (8S). Here 85 is
normalized by N. The slope of the fit line is —3.0, drawn for
the eye.

058701-3

k is the accumulated sum of the fraction of shortest path-
ways passing through & and its distribution follows a
power law, P,(g) ~ g~ " for SF networks. The BC expo-
nent 7 turns out to be robust as either n =~ 2.2(1) (class I)
or p = 2.0(1) (class IT) as long as 2 <y =3 [12,17].
Interestingly, the networks (i)—(viii) in Table I having
the diameter change exponent { = 2.2 belong to class I,
and the values of { and 7 coincide with each other within
our numerical resolutions, while they are different for
class II. Empirically, the rank of a vertex in g and that in
A are likely to be the same for vertices with large degrees.
If then, the relation P,(g)dg ~ P.(A)dA would hold
asymptotically, leading to

A(g) ~ gln=D/&=D (2)
for large g. This type of relation also holds between
degree and BC [12]. Indeed, the slopes in the double
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FIG. 4. The diameter change distribution P.(A) for the
Internet at the autonomous system level. The slope of the fit
line (dashed) is —1.7, drawn for the eye. Upper inset: Plot of
A(g) vs. g. The slope of the straight line is 1.4, drawn for the
eye. Lower inset: The largest-cluster-size change distribution
P,(8S). Here 65 is normalized by N. The slope of the fit line is
—2.4, drawn for the eye.

058701-3



VOLUME 91, NUMBER 5

PHYSICAL REVIEW LETTERS

week ending
1 AUGUST 2003

logarithmic scale in the upper insets in Figs. 3 and 4 are
1.1(1) for the PIN and 1.4(1) for the Internet, respectively,
consistent with the predictions from the formula, Eq. (2).
Thus, the two classes, classes I and II, are also catego-
rized by the diameter change distribution and the dis-
tinction between them can be observed more clearly
through it.

Our finding that the diameter change distribution is
also classified into classes I and II following those for BC
distribution may be rooted from the fact that both quan-
tities, diameter and BC, depend on universal features of
the shortest pathways topology between a vertex pair in
networks. When the sum rule [29], ie., > g; ~d, is
applied, one can see immediately that the diameter
change distribution is the same as the total BC change
distribution. On the other hand, the networks belonging to
class II are more sparse and ramified than those in class I,
so that the Internet is more fragile by the removal of a
single vertex than the PIN. We compare the distribution of
the size change 85 of the largest cluster for the PIN and
the Internet by a single vertex removal. As shown in the
lower insets in Figs. 3 and 4 , the giant cluster in the
Internet becomes much smaller than in the PIN. Thus,
the number of vertex pairs connected after the removal
becomes much smaller in the Internet than in the PIN.
Consequently, the difference of the exponent { between
the two classes appears much larger than that of the
exponent 7 in class II. However, it is not clear how the
power-law behavior in P.(A) arises and what determines
its exponent.

It would be interesting to generalize our study to the
case of having more than one vertex removed. For sim-
plicity, we consider the case of two-vertex removal, in
particular, one is the hub and the other is an arbitrary
vertex. Interestingly, we find that the diameter change
distribution also exhibits a fat-tail behavior with the
same exponent {. We cannot check if the fat-tail behavior
still holds for more general cases due to the huge amount
of computing time. Meanwhile, it has been studied that
the SF network is robust against random failures. To show
this, the diameter change due to removal of a finite
fraction of vertices was measured by taking an average
over a few samples, not over the whole ensemble. If the
diameter change distribution after those removals still
possesses a power-law distribution with { = 3, as is the
case here, then we could say that the average diameter
change cannot reflect its intrinsic nature because its vari-
ance diverges. Thus, the diameter changes after random
failures should also be described in a probabilistic way.

In summary, we have studied the diverse behavior in
response to a small perturbation, a deletion of a single
vertex in SF networks. The diameter change A by a
removal of a vertex is very diverse, exhibiting a power-
law distribution with an exponent ¢ for large A.
Moreover, the diameter change exponent / is robust as
{ = 2.2 for most SF networks with2 <y =3,or { = 1.7
for the Internet as an exception.
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