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We study the dynamics of the Internet topology based on empirical data on the level of the autonomous
systems. It is found that the fluctuations occurring in the stochastic process of connecting and discon-
necting edges are important features of the Internet dynamics. The network’s overall growth can be
described approximately by a single characteristic degree growth rate g.s = 0.016 and the fluctuation
strength o = 0.14, together with the vertex growth rate a@ = 0.029. A stochastic model which in-
corporates these values and an adaptation rule newly introduced reproduces several features of the real
Internet topology such as the correlations between the degrees of different vertices.
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Recently many studies on complex systems [1,2] paid
attention to complex networks [3,4]. An interesting feature
emerging in such complex systems is a power-law behavior
in the degree distribution, Pp(k) ~ k=7 [5,6], where the
degree k is the number of edges incident upon a given
vertex. Recently, Barabdsi and Albert (BA) [6] introduced
an evolving network model to illustrate such networks,
called the scale-free (SF) networks, in which the number
of vertices N increases linearly with time, and a newly
introduced vertex is connected to already existing vertices
following the so-called preferential attachment (PA) rule.

Huberman and Adamic (HA) [7] proposed another sce-
nario for SF networks. They argued that the fluctuation
effect arising in the process of connecting and disconnect-
ing edges between vertices, is the essential feature to de-
scribe the dynamics of the Internet topology correctly. In
this model, the total number of vertices N(¢) increases ex-
ponentially with time as

N(t) = N(0)exp(at). (D

Next, it is assumed that the degree k; at a vertex i evolves
through the multiplicative process [8],

kit + 1) = k(@) [1 + (r + D], 2

where £;(r) is the growth rate of the degree k; at time ¢,
which fluctuates from time to time. Thus, one may divide
the growth rate ;(¢) into two parts,

Gi(t) = goi + &), 3)

where go; is the mean value over time, and &;(r) the rest
part, representing fluctuations [9]. &;(¢) is assumed to be
a white noise satisfying (£;(r)) = 0 and (&;(1)¢;(¢')) =
o'%,i 8,198 j, where o'%,i is the variance. Here (---) is the
sample average. For later convenience, we denote the
logarithm of the growth factor as G;(r) = In[1 + ;(1)].
Then a simple application of the central limit theorem en-
sures that k;(r)/k;(to), to being a reference time, follows
the log-normal distribution for sufficiently large . To get
the degree distribution, one needs to collect all contribu-
tions from different ages 7;, growth rates go;, standard
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deviations o ;, and initial degree k;(zp). HA first as-
sumed that {; are identically distributed so that go; = go
and o(; = oy for all i. Then the conditional probability
for degree, Pp(k, 7| ko), that k; = k at time t = ¢y + T,
given k; = kg at t = t( is given by

1
Pp(k, 7 | ko) =
k 2770'gff7'
In(k/ko) — gets 7]
Xexp{_[ﬂ( / 0)2 getfT] } @
zo-effT

where gerr = (Gi(1)) and o = ((Gi(t) — (Gi())P).
gerf and Ugff are related to gg and oy as gesr = go — o’% /2
and ogp = o’%, respectively [11]. Since the density of
vertices with age 7 is proportional to p(7) ~ exp(—a7),
the degree distribution collected over all ages becomes

Pp(k) ~ f dr p(7)Pplk, 7| ko) ~ k77, (5)

where

2 2
8eff \/geff + 2aa—eff
—2 + - 5 .

2
O eff O eff

y=1- (6)
Therefore, it is instructive to know the effective values of
getr and ogr to determine the degree exponent.

The Internet topology on the level of the autonomous
systems (AS) has been recorded by the National Labora-
tory for Applied Network Research (NLANR) [12] since
November 1997, which enables one to study its evolution.
Here a node represents an AS, which is a unit of router
policy in the Internet, consisting of either a single domain
or a group of domains. Analysis of these data sets has been
performed by several research groups. Some of the find-
ings are as follows: First, the numbers of vertices N(¢)
and edges L(¢) increase exponentially with time [13], and
L(t) ~ N(t)'*% with & > 0, showing the so-called accel-
erated growth [14]. Second, the degree distribution fol-
lows a power law with exponent, y = 2.2 = 0.1 [13,15].
Third, there occurs the PA behavior in the evolution pro-
cess [16]. Last, there exist certain nontrivial correlations
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between the degrees of different vertices [15]. Meanwhile,
Capocci et al. [17] considered the Internet on the levels of
both the Internet Service Providers (ISPs) and hosts, in
which the relative frequency of the creation of the ISPs
and hosts determines the degree exponent.

In this Letter, we analyze the empirical data of the In-
ternet topology from the viewpoint of fluctuation-driven
adaptive dynamics arising in the process of connecting and
disconnecting edges. We find that the fluctuation effect is
indeed essential to the dynamics of the Internet topology.
We measure the growth rate of vertices a and the effective
values of gerr and ofr, and determine the degree exponent
v using Eq. (6), which is well compared with the directly
measured value. Moreover, using the measured values, we
construct a stochastic model following the HA idea. In ad-
dition, we include in our model an adaptive process that
favors rewiring towards vertices with higher degree. The
network structure constructed in this way reproduces the
topological features of the real Internet, such as the corre-
lations between the degrees of different vertices.

Numerical analysis.—In our analysis, the data are se-
lected monthly, so that time is discretized with one month
as a unit time step. We have analyzed the data from
November 1997 through January 2000, corresponding to
t = 0 and 26, respectively. First we examined the total
number of vertices N(¢) existing at time ¢, which grows ex-
ponentially with time as N(z) = N(0)exp(ar) with a =
0.029(1) (see Fig. 1). The number of edges L(¢) also in-
creases exponentially with time as L(r) = L(0)exp(B1)
with B = 0.034(2) (see Fig. 1), leading to the relation
L(t) = N()'*? with 6 = 0.16(4). While the total num-
ber of vertices increases with time, some vertices disap-
pear from the data as time goes on due to permanent or
temporary shutdown of the corresponding AS. Thus the
number of vertices Ny(f) introduced earlier than 7 = 0
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FIG. 1. Semilogarithmic plot of the total number of vertices

N(t) (o) and edges L(z) (o) as a function of time. The dashed
and dotted lines obtained via the least-squares fit have slopes
0.029 and 0.034, respectively. Inset: Semilogarithmic plot of
Ny(t) versus t.
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but still remaining at time ¢, decreases with time. Note
that the decreasing rate of Ny(z) is considerably reduced
across t = 14 (see the inset of Fig. 1). The hub, the ver-
tex with the largest degree, remains identical to the initial
one throughout the period we studied.

The average number of degree kpw(t) of the vertices
newly introduced at time ¢ fluctuates in time about a posi-
tive mean {knew); = 1.34 with a standard deviation o pew =
0.05, where (- - -); denotes the average over a time interval
T. This result suggests that each newly introduced vertex
connects to only one or two existing vertices, and internal
links between existing vertices are created actively as time
goes on. So, the Internet becomes much more interwoven,
and L(t) grows faster than N(z).

We consider the dynamics of the degree k;(f) at each
vertex i as a function of time. For convenience, we deal
with only the vertices existing all the time from ¢t = 0 to
t = 26, and the set composed of such vertices is denoted
by S. Thus the degree growth rate of a vertex i, G;(t) =
In[k;(¢)/k; (r — 1)] is well defined, because k;(z) # O for
any vertex [ € S for all . The measured value of G; ()
fluctuates in time about a finite value. Let g; = (G;); and
o? = ((G; — (G;))),. If the dynamics follows that of
the HA model, a histogram of g; for many vertices would
show the Gaussian distribution with mean g.¢¢ and variance
o¢/T. We find that {g;} show some correlations with the
degree of the vertex. In particular, the behavior of Gj(¢)
at the hub is interesting (see the inset of Fig. 2). It is
found that the fluctuation of Gy (¢) is drastically reduced
across ¢ = 15, February 1999. We obtain g, = 0.037(20)
by averaging over the earlier period from ¢+ = 1 to 15,
while g, = 0.031(6) over the later period from ¢t = 16 to
26. Thus, the degree of the hub depends on N (¢) as k(1) ~
N7"(t), where the exponent 7 is related to g, as =
gn/ a, exhibiting a crossover behavior from 1 = 1.3(1) to
1.0(1) as directly measured (see Fig. 2). Note that n = 0.5
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FIG. 2. Plot of the degree of the hub k;,(¢) versus the number
of vertices N(f). Inset: Plot of the growth rate G, () of the
degree at the hub versus ¢. The dotted lines are the average
values for given intervals.
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in the BA model. Despite the apparent correlation of the
growth rate with degree, we do not attempt further analy-
sis but rather focus on the distribution of {g;} below in
accordance with the HA idea. Data shown in the insets of
Figs. 1 and 2 suggest that the Internet topology has become
much stabilized around ¢ = 15. Therefore, we will use
only the data of the later period for further discussions.

We measured the mean growth rate g; and the corre-
sponding standard deviation o; defined above for each ver-
tex i (i € S) by taking the average over the period from
t = 16 t0 26 (I = 10). The measured values {g;} (i € S)
are distributed as shown in the inset of Fig. 3. In this inset,
an abnormal peak is located at g = 0, which is mostly con-
tributed by the vertices whose degree is a few and never
changes at all during the period we studied. Thus those
vertices may be regarded as the ones located at dangling
ends in the graph, and be ignored for the dynamics of the
Internet topology. In the inset of Fig. 3, we fit the data
other than the g = 0 peak to the Gaussian form with mean
g =~ 0.016(2) and standard deviation o, = 0.04. On the
other hand, the measured values {o;} are also distributed
but with small dispersion around the mean & = 0.12(6).
In the HA model, § and o, would correspond to gesr and
oer/T, respectively.

It is most likely that g and & have a distribution among
vertices. To obtain more accurate degree distribution,
Eq. (4) has to be averaged over those distributions. Not
knowing such details, however, we try to approximate the
growth process by a single process whose effective mean
growth rate and standard deviation are g.; and oegr, Te-
spectively. For this purpose, we plot in Fig. 3 the distribu-
tion P[k;(t)/k;(t9)] in terms of the scaled variables x and
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FIG. 3. Plot of P[k;(t)/k;(0)] versus k;(t)/k;(0) for different
times in terms of y and x defined in the text. The dotted line is
our best fit of which the peak is located at g; = 0.016 and the
standard deviation is oy = 0.14. Inset: Plot of the distribution
of g; = (G;),, Pg(g), versus g = g; for the vertices in the set S.
The dashed line is our best fit of the central part following the
Gaussian distribution of which the peak is located at § = 0.016
and the standard deviation is o, = 0.04.
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y defined as

o = Inlki(@0)/ki(t0)] — galt = t0) ™

V203t = to)
and

y = PLki(1)/ki(10)1[k; (t)/ki(to) W2mos*(t — t5), (8)

using a semilogarithmic scale, where g, and o, are fit-
ting parameters. We choose 7y = 0, and the data shown
in Fig. 3 are for times ¢ > 15. It appears that the data for
different times collapse onto the curve Iny = —x? reason-
ably well for small x with our best choice of g; = 0.016
and o, = 0.14 as shown in Fig. 3. Larger deviations for
large x are due to ¢ being finite and are caused by the
rare statistics of a few nodes whose degree increases by
an anomalously large factor. The values g; and o, are
close to g and &, respectively. Also, oy/+/T = 0.044 is
consistent with o,. We also checked o4 by measuring the
variance of P[k;(t)/k;(ty)] for each time, and plotting them
as a function of time. The slope of the asymptotic line in
the plot corresponds to ol Using this method, we also
obtain o, = 0.14(1), which is in agreement with the one
obtained through the data-collapse method. Thus, the val-
ues gerr =~ 0.016 and oerr = 0.14 may be regarded as the
effective values representing the growth process as a single
stochastic process. Applying those values to the formula
Eq. (6), we obtain the degree exponent y = 2.1, which is
in agreement with the directly measured one yas = 2.2(1)
[13,15].

Stochastic model.— Using the measured values, «, geft,
and o.fr, and following the HA idea, we construct a sto-
chastic model evolving through the following three rules:
(i) Geometrical growth: At time ¢, a geometrically in-
creased number of new vertices, aN(t — 1), are intro-
duced in the system, and following the fact (knew); = 1.34,
each of them connects to one or two existing vertices ac-
cording to the PA rule. (ii) Accelerated growth: Each exist-
ing vertex increases its degree by the factor gg = gesr +
os6/2. These internal edges are also connected follow-
ing the PA rule. (iii) Fluctuation and adaptation: Each
vertex disconnects existing edges randomly (respectively,
connects new edges following the PA rule) when the noise
[£i(r) in Eq. (3)] is chosen to be negative (respectively,
positive). This fluctuation has the variance o = U'gff.
When connecting, the PA rule is applied only within the
subset of the existing vertices consisting of those having
more degree than the one previously disconnected. This
last constraint accounts for the adaptation process in our
model. Through this adaptation process, the Internet be-
comes more efficient.

With this stochastic model, we first measure the degree
exponent to be yYmode1 = 2.2, close to the empirical result
vas = 2.2(1). Second, the clustering coefficient is mea-
sured to be Cioger = 0.15(7), comparable to the empirical
value Cpas = 0.25 (see also Ref. [15]). Note that without
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FIG. 4. Plot of the conditional probability P(k | k') for the dan-
gling vertices with &’ = 1 (diamonds) and the hub (circles).
Data points with filled (open) symbols are from the real Inter-
net data (the model simulations). The dashed (dotted) line has
a slope —1.9 (—1.1), drawn for a guide to the eye. Inset: Plot
of the average degree of nearest neighbors of a vertex whose
degree is k, (k,,) = >4 k'P(k’| k), as a function of k from the
model simulation (open square) and the real data (filled square).

the adaptation rule, we get only C = 0.01(1). Third, we
measure the conditional probability, P(k|k’), that the
degree of a vertex is k given that it is connected from a
vertex with degree k’. For both our model and the real
data, it is obtained that P(k | k') ~ k' for small k¢’ and
~k~19W for large k' (see Fig. 4). Note that, for linearly
growing networks with the PA rule, it is known that the
probability that vertices of degree k (ancestor) and k'
(descendent) are connected scales as ~k~ (Y~ Dg/~2
[4,18]. Finally, we measure the average degree of the
nearest neighbors of a vertex whose degree is k, (knn) =
D>« k'P(k"| k), as a function of k. It exhibits a decaying
behavior for large k, in agreement with the observation
for the real Internet topology, as shown in the inset of
Fig. 4 (see also Ref. [15]). This is in contrast with the
k-independent behavior occurring in the BA model. The
adaptive feature in rule (iii) is crucial to reproduce such
detailed agreements between our model and the real
data: While the degree exponent ymege1 = 2.2 can be
obtained without the adaptation rule, other results cannot
be obtained without it. So adaptation and fluctuation are
essential ingredients to describe the real Internet topology
correctly. Meanwhile, due to the adaptation effect, the
network is more centralized to the hub, so that it spreads
diseases more quickly via the hub [19] and becomes more
vulnerable to the attacks [20].

Summary.—The Internet topology evolves exponen-
tially in the number of vertices and edges as time goes on.
The degree of each vertex also increases exponentially
with time, but its growth rate fluctuates strongly from
time to time. The effect induced by such fluctuations is
essential [21]. This has not been incorporated properly
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so far in most scale-free network models. Based on the
numerical measurement, we construct a stochastic model
following the HA idea. In addition, the adaptation process
arising in the evolution of edges has been newly taken into
account in our model, through which we can reproduce
the correlations between the degrees of different vertices
in the real Internet.
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