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Geometric fractal growth model for scale-free networks
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We introduce a deterministic model for scale-free networks, whose degree distribution follows a power law
with the exponeny. At each time step, each vertex generates its offspring, whose number is proportional to the
degree of that vertex with proportionality constant-1 (m>1). We consider the two cases: First, each
offspring is connected to its parent vertex only, forming a tree structure. Second, it is connected to both its
parent and grandparent vertices, forming a loop structure. We find that both models exhibit power-law behav-
iors in their degree distributions with the exponent 1+In(2m—1)/Inm. Thus, by tuningm, the degree
exponent can be adjusted in the range;2<3. We also solve analytically a mean shortest-path distance
between two vertices for the tree structure, showing the small-world behavior, that lisN\/In k, whereN is
system size, and is the mean degree. Finally, we consider the case that the number of offspring is the same
for all vertices, and find that the degree distribution exhibits an exponential-decay behavior.
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[. INTRODUCTION abundant in real world such as the world-wide wW8b-11],
the Internet[12—15, the citation networ 16|, the author

Recently, complex systems have received considerable atollaboration network of scientific papdik7], and the meta-
tention as an interdisciplinary subjelt,2]. Complex sys- bolic networks in biological organisni48].
tems consist of many constituents such as individuals, sub- While a lot of models have been introduced to describe
strates, and companies in social, biological, and economi8F networks in real world, most of them are stochastic mod-
systems, respectively, showing cooperative phenomena bels. However, a couple of models recently introduced by
tween constituents through diverse interactions and adapt®arabai, Ravasz, and VicsefBRV) [19], and Dorogovtsev
tions to the pattern they creaf8,4]. Recently, there have and MendegDM) [20] are deterministic. In general, deter-
been a lot of efforts to understand such complex systems iministic model is useful for investigating analytically not
terms of networks, composed of vertices and edges, whermnly topological features of SF networks in detail, but also
vertices (edge$ represent constituent@heir interactions dynamical problems on the networks. Both the BRV and the
This approach was initiated by Ersland Rayi (ER) [5]. In DM models are meaningful as not only the first attempts for
the ER model, the number of vertices is fixed, while edgesleterministic SF networks, but also as the ones constructed
connecting one vertex to another occur randomly with a cerin a hierarchical way, so that analytic treatments can be made
tain probability. However, the ER model is too random toeasily using recursive relations derived from the two struc-
describe real complex systems. Recently, Basabad Al-  tures in successive generations. In the BRV model, however,
bert (BA) [6,7] introduced an evolving network where the the mean shortest-path distance between two vertices aver-
number of verticedN increases linearly with time rather than aged over all pairs, called the diameter, is independent of
fixed, and a newly born vertex is connected to already existsystem size. Thus, the BRV model may be relevant to some
ing vertices, following the so-called preferential attachmentspecific systems such as the metabolic netw{t$, where
(PA) rule; when the number of edgksncident upon a vertex the diameter is independent of system size. In this paper, we
is called the degree of the vertex, the PA rule means that thistroduce another type of the deterministic model for the SF
probability II; for the new vertex to connect to an already network, which is also constructed in a hierarchical way. Our
existing vertexi is proportional to the degrelg of the se- model is based on almost the same idea as that of the DM

lected vertex, that is, model. While the DM model starts from a triangle, our
model does from a tree structure. This difference makes one
k, easily modify the model into more general cases such as
Ij=——-. (1 loopless or loop structures, and the ones with a various num-

E K; ber of branches. Moreover, the simplicity of our model en-

i ables one to obtain the analytic solution for the degree dis-
tribution and the diameter. In particular, our model includes a
The main difference between the ER and BA models appearsontrol parameter, so that by tuning the parameter, we can
in the degree distribution. For the ER network, the degrembtain SF networks with a variety of degree exponents in the
distribution follows the Poisson distribution, while for the range, 2<y<3. Therefore our model should be useful to
BA network, it follows a power lawP(k)~k™” with y=3.  represent various SF networks in real world, in particular, of
The network whose degree distribution follows a power lawa tree shape. For example, the hierarchical tree structure is
is called the scale-fre€SF) network [7]. SF networks are known as “structural hole” in sociology, a typical type of
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social networks. Since the model of the structural hole is @
used for investigating the centrality in social netwofR4], ;
and moreover recent studies show that social systems als
exhibit SF behaviord22], our model could be used for
studying social systems. Moreover, the internet structure in ® —=> =>
the autonomous level is effectively of a tree-tyj#3], so
that the data packet transport on the internet can be undel
stood analytically via our deterministic model.

This paper is organized as follows. In Sec. Il, we will
introduce deterministic models specifically for tree and loop t=() t=1 t=2
structures, respectively. In Sec. lll, analytic treatments will
be performed for the deterministic models introduced in Sec. FIG. 1. Tree structures in the addition rule with=3 att=0, 1,

II. The final section will be devoted to conclusions and dis-and 2. The vertices born &0, 1 and 2 are denoted I, A and
cussions. O, respectively.

Il. DETERMINISTIC MODEL 1 for t;=0

LA(ti): m(l—}—m)ti_l for ti>1, (5)

It is known that the number of vertices in most of SF

networks in real world increases with time exponentially. . .
Thus, our deterministic model is constructed in this evolving\'\lhelre thebSUb‘;‘C”m. str;nds for the add|t|'on ryle. Thus, the
way, that is, the number of vertices increases exponentiall{Pt@l number of verticedl,(t) present at time is

with time, where each already existing vertex generates its

offspring, and connects them. Thus, vertices are ordered hi- _ Et: B t
erarchically. On the other hand, for real networks, it is NA(t)_tFO La(ti)=(1+m)" )
known [24,25 that the PA probabilitylT; in Eg. (1) is modi-
fied into The definition of this model is illustrated schematically in
, K+ Fig. 1.
= ' @ 2. The multiplication rule

In the case of the multiplication rule, the number of off-
) ) spring generated from each old vertex is not the same, but it
whereu accounts for some randomness in connecting edge%}epends on the degree of each vertex K.t) be the degree
To take into account of this modified PA behavior, we intro- ¢ 4 given vertex at timet. Under the multiplication rule,

duce two rules, called the addition and the multiplicationine number of offspring newly generated at titzom the
rule, in the deterministic model, depending on how new Veryete| is proportional to its degree at the previous time, i.e.,
tices are generated from each old vertex. The details on bot(}n_ 1)k (t—1), wherem—1 is a proportionality constant

. . | ) .
rules will be described below. Thus the degree of the vertéincreases by the factan at

each time step, that is,
A. Tree structure

The network forms a tree structure when new vertices ki(t)=mk(t—1) (7)
generated from an old vertex are connected to their parent
only. for t=2. The degree of the vertex, borntat0 (t=1), at
time t=1 is kg(1)=m (k{(1)=1). Then the degree of the
1. The addition rule vertexi at timet becomes
In the case of the addition rule, at each time step, a con-
stant number of new vertices, sag,new vertices, are gen- ki(t)=m'"", 8

erated from each already existing vertex, and they are con-
nected to their parent only. Then the degkefg) at vertexi wheret; means the birth time of the vertéxNext, letL,,(t)

at timet evolves as be the total number of vertices newly born at titpevhere
the subscripM stands for the multiplication rule. Then we
ki(t)=ki(t—1)+m, (3)  have the following relation:
so that ti—1
Lm(t) =2 (m=1)mi~ 1l y(t) ©)
ki(t)=1+m(t—t;), 4 =0

for t=t;, wheret; is its birth time. On the other hand, the for t;=2 with L\,(0)=1 andLy(1)=m. Then we obtain
number of vertices newly born at tiniebecomes Lw(t;) in a closed form to be
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OA2,1,0 11I. ANALYTIC SOLUTION
A. The degree distribution for the tree structure

Since the degree of each vertex has been obtained explic-
ity as in Egs.(4) and (8) and the degree of each vertex is
ordered with time, one can obtain the degree distribution via
its cumulative distribution, i.e.,

S S P(k)=P(ki>k—1)—P(k>k), (12)
t=0 t=1 t= or

FIG. 2. Tree structures in the multiplication rule with=3 at 1-P(k>K)]
t=0, 1, and 2. A (®) stands for the vertex at center borntat k)= -
=0. Ay (A) is the offspring of A born att=1. A,gand Ay, ak
(O) are the offspring of fand A o, respectively, born at=2.

(13

The details of the analytic treatments are given as follows.

1 if t;=0 1. The addition rule
Lu(t)=y m if =1 (10 Using the factP r(ki>k)=Pa 1(t;<r=t—[k—1]/m),
2m(m—1)(2m—1)4"2 if t,=2. where the subscripf means the tree structure, we obtain that
7—1 L (t)
The total number of vertice,,(t) at timet is given by Par(ki>k)=> NA(tI)
' ti:0 A
t i 7—1
1 if t=0 1 m
= = — t
Nu(®= 2 bu®)=] 1 | iom- 1)t if =1 Lot e 2 (T
11
=(1+m)-K=Dim, (14)

The definition of this model is illustrated schematically in yging the relation thaP, (k)= P, 1(k;>k—1)—Px 1(k;

Fig. 2. >k), we obtain

B. Loop structure Par(k)=(1+m) & DM mtm_1] (15

A loop structure can be generated when each newly borgo, the degree distributio, +(k) decays exponentially
vertex is connected to both its parent and grandparent vertivith k under the addition rule.
ces as illustrated in Fig. 3. In particular, if the parent of a
certain vertex is the vertex borntat 0, then the grandparent 2. The multiplication rule
is regarded as one of the vertices borrtatl. This rule is

valid for both cases of the addition and the multiplication Since the degrek; has been obtained explicitly as a func-

tion of time in Eq.(8), Py t(ki>Kk) is replaced byPy +(t;

rule. <7), wherer=t—Ink/Inm. Thus,

Q. Jn) 7—1
o, Py LM(tI)

/ Pu t(ki>k)=
M’T( ! ) tizo Nm(t)
1+m
1+m(2m-1)t1
7—1

> 2(m—1)(2m—-1)4i~?
+ti:2 1+m(2m—1)t1

Ockfln(me 1)/In m (16)
& " Thus the degree distribution is obtained to be
t=2 1— Py 1(k>k
. o . . PM T(k): [ M,T( I )]Ock_,y(m)' (17)
FIG. 3. Loop structure in the multiplication rule with=3 at ' ok

t=2. The vertices with the symbol®, A, andO are born att
=0, 1, and 2, respectively. where
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y(m)=1+In(2m—-1)/Inm. (18 _
D(t)—gj di j (1) (24)

In the limit of m— 1, one can gey(1)= 3, while asm goes

to infinity, one getsy(x)=2. Thus by tuning the parameter | js not easy to derive a closed formula (t) for both the
m, one can get a variety of SF networks with different expo-tree and the loop structures, however, we TXt) for the

nents in the range, 2 y<3. tree structure at a few early times in the Appendix. We trace
the formula for the tree structure in two limiting cases,
B. The degree distribution for the loop structure —0 andm—, as follows.

Let us first consider the case of— 1. For this case, we

_ . . denotem=1+ e ande<1. The total number of nodds,(t)
Letn;(t) be the degree of vertexborn at timet;, attime  at timet is given by

t for the loop structure. As a new vertex is connected to its
parent and grandparent, each old vertex is connected o its Ny (t)=1+(1+¢€)(1+ 2¢)7 =2+ (2t—1)e+O(€?),

1. The addition rule

children andm? grandchildren. So, Eq3) is modified as (25)
mi(D)=ni(t=1)+(m+m?). (19 for larget. So, InfNy—1)~(2t—1)e within the first order of
€. Moreover, the sum of all chemical distanc®gt) be-

Taking the same steps as for the loopless case, we obtain tQS

degree distribution following the exponential decay, mes

D(t)~2+4(2t—1)e+O(€?). (26)
Par(nec(1+m+ m2) ~/(m+m?), (20)
. Using the relation in Eq(23), we can obtain the average
where the subscrigt means the loop structure. distance to be
2. The multiplication rule 2+4(2t—1)e
_ . =———————+0(€),
Let n;(t) be the degree of verteixat timet for the loop 2+3(2t—1)e
structure in the multiplicative rule. The degree of vertean
\ - ) 2+41In(Ny—1)
be obtained via the relation, ~ +0(e?) (27)
2+3In(Ny—1) '

ni(t)=n;(t—1)+(m—1)k;(t—1)+(m—1)%k(t—2),
(2D Therefore, the diameter converges to 4/3 in the limit of
NM_N)O'
where the second term on the right hand side of the above Next, we consider the case afi—. In this case, the
equation results from the children of the vertexand the  term in the highest order afi could be dominant, so that we

third term from the grandchildren of the vertexThus, the  trace the coefficient of the term in the highest ordenoés
degree at the verteixbecomes a function of time.

2m-1 D(0)=0,

ni(t)%( )m“‘. (22)
D(1)=2m?+ lower order terms,

for t>t;. Since the degreer;(t) depends on timé similarly

to Eq. (8), we can apply Eq(16) even to the loop case, D(2)=[(2+3)+(3+4)]m"+lower order terms,

except that = is replaced by r=t+In(2m—1)/iInm—1

—Inn/Inm. This replacement, however, does not affect the D(3)=[(2+2X3+4)+2X(3+2X4+5)+(4+2X5

degree exponent at all. Thus, even for the loop structure, the

degree exponent is reduced to the same valye,l

+In(2m—1)/Inm as the one in Eq(198).

+6)]mC+ lower order terms,

D(4)=[(2+3X3+3X4+5)+3(3+3X4+3X5+86)

C. The diameter for the tree structure +3(4+3X5+3X6+7)+(5+3X6+3X7

The diameterd(t) is defined as a chemical distance be- +8)m®+ lower order terms,
tween two distinct vertices along the shortest path averaged
over all pairs of vertices at timg that is,

1 t t
= o t t
1= oo & W @ p+1)=3, o) [t pr2ymacees
whered; ;(t) is the chemical distance between verte j. + lower order terms. (28)
For simplicity, letD(t) denote the sum of the chemical dis-
tances between two vertices over all pairs, that is, Using the formuld 26],
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(29

t
t
> k(k) =t2t71
k=0

D(t) in the highest order aofn is obtained explicitly to be

t—1 t—l
;()( K )(k+p+2)m2t

t—1
t—1
D(t)~ D, ( 0
p=0

t—1 t—1
=p§o( 0 >m2t[t—1+2(2+p)]2t—2
=(t+1)2% 2m?". (30)
On the other hand, using E(L1),
Ny (D[ Ny (t) —1]~2%""2m?, (31

Therefore, the diametet(t) at timet becomes simply

A ~t+ 1= mSU D)

In(2m—1) ' (32)

Thus, for largeN,, , the above equation is rewritten simply

as
d(Ny)~InNy /Ink (33

with the mean degreEme, which confirms the small-
world behavior.

IV. CONCLUSIONS AND DISCUSSIONS

PHYSICAL REVIEW E 65 056101

spring, whose number is proportional to the degree of the
vertex. Depending on whether each new offspring is con-
nected to only one or more than one old vertices, the network
forms either a tree structure or a loop structure, respectively.
We have obtained the analytic solution for the degree distri-
bution and the diameter explicitly for the deterministic
model. By tuning a control parameter in the model, we can
adjust the degree exponent in the range,72<3. Thus this
model can represent a variety of SF networks in real world.
Moreover, we obtained the diameter of the deterministic

model analytically to be&l~In N/Ink, whereN is the system

size andk is the mean degree. Since the network is generated
in a hierarchical way, it is expected that a variety of physical
problems can be solved through this deterministic model by
constructing recursive relations derived from two structures
in successive generations. On the other hand, the determin-
istic model has a shortcoming that it does not include any
long-ranged edge, connecting two vertices belonging to dif-
ferent branches separatedtat0. Thus, this model can be
used only for the model for a tree structure. Despite this
shortcoming, we think that our deterministic model could
offer a guide toward generating more realistic deterministic
model for SF networks.
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APPENDIX

We have introduced a deterministic model for the scale-

free network, which is constructed in a hierarchical way. At

The closed formula for the sum of the chemical distance

each time step, each already existing vertex produces its ofbetween two vertice®(t) is shown for Gst<3.

D(t=0)=0,

D(t=1)=Nym+N;{1+2(m—1)],

D(t=2)=Ng[m?+2m(m—1)]+N; dm+2m(m—1)+2(m—1)+3(m—1)(m—1)]+ N {1+ 2m?—2(m+1)+2m
+3m(m—1)]+ Ny J1+2(m—1)+3(m?—1)+4(m—1)],

D(t=3)=Ng[m*+ 2(m?—m)(m—1)+2m(m—1)+2m(m?—m)+3m(m—1)(m—21)]+N; { Im?+2m3—2+2(m—1)

X (m—1)+3{(m—1)2+(m*—m)(m— 1)+ (m—1)(m*—m)}+4(m—1)3]+ A, (m+2(m3*— 1)

+3{[m(m—1)—1](m—1)+m(m?—m)+m(m—1)}+4m(m—1)%)+ Ny, d m+2(m*— 1)+ 3{(m?*-1)

+(m—21)(m=2)}+4{(m*—m)(m—1)+(m—1)%+(m—1)(m*—m)} +5(m—1)3]+ N { 1+ 2(m3—1)
+3{m*(m—1)+m(m?—m)} +4m(m—1)2]+ N3, (1+2(m—1)+3(m*— 1)+ 4{[m(m—-1)—1](m—1)
+m(m?—1)}+5m(m—1)%)+ Nz J1+2(m?— 1)+ 3{(m*— 1)+ (m—1)(m— 1)} +4{(m*~1)(m—1)+(m—1)
X (m?2=m)}+5(m—1)3]+Nz5141+2(m—1)+3(m*—1)+4{(m*- 1)+ (m—-1)(m—1-1)}
+5{(m?=1)(m—1)+(m—1)(m?—1)}+ 6(m—1)3],
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where
No=1,
Nig=m,
Nog=m(m—1),
No1o=m(m—1),

N3 og=m?(m—1),

PHYSICAL REVIEW EG65 056101

Ni1o=m?(m—1),

N3 o=m(m—1)2,
and

N3 z16=m(m—1)2

N (jy means the number of the vertices denotedApy;, in
Fig. 2, where the first indeixstands for its birth time and the
rest indices{j} are its parent vertex.
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