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Geometric fractal growth model for scale-free networks
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We introduce a deterministic model for scale-free networks, whose degree distribution follows a power law
with the exponentg. At each time step, each vertex generates its offspring, whose number is proportional to the
degree of that vertex with proportionality constantm21 (m.1). We consider the two cases: First, each
offspring is connected to its parent vertex only, forming a tree structure. Second, it is connected to both its
parent and grandparent vertices, forming a loop structure. We find that both models exhibit power-law behav-
iors in their degree distributions with the exponentg511 ln(2m21)/ln m. Thus, by tuningm, the degree
exponent can be adjusted in the range, 2,g,3. We also solve analytically a mean shortest-path distanced

between two vertices for the tree structure, showing the small-world behavior, that is,d; ln N/ln k̄, whereN is

system size, andk̄ is the mean degree. Finally, we consider the case that the number of offspring is the same
for all vertices, and find that the degree distribution exhibits an exponential-decay behavior.
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I. INTRODUCTION

Recently, complex systems have received considerabl
tention as an interdisciplinary subject@1,2#. Complex sys-
tems consist of many constituents such as individuals, s
strates, and companies in social, biological, and econo
systems, respectively, showing cooperative phenomena
tween constituents through diverse interactions and ada
tions to the pattern they create@3,4#. Recently, there have
been a lot of efforts to understand such complex system
terms of networks, composed of vertices and edges, w
vertices ~edges! represent constituents~their interactions!.
This approach was initiated by Erdo¨s and Re´nyi ~ER! @5#. In
the ER model, the number of vertices is fixed, while edg
connecting one vertex to another occur randomly with a c
tain probability. However, the ER model is too random
describe real complex systems. Recently, Baraba´si and Al-
bert ~BA! @6,7# introduced an evolving network where th
number of verticesN increases linearly with time rather tha
fixed, and a newly born vertex is connected to already ex
ing vertices, following the so-called preferential attachm
~PA! rule; when the number of edgesk incident upon a vertex
is called the degree of the vertex, the PA rule means that
probability P i for the new vertex to connect to an alrea
existing vertexi is proportional to the degreeki of the se-
lected vertexi, that is,

P i5
ki

(
j

kj

. ~1!

The main difference between the ER and BA models app
in the degree distribution. For the ER network, the deg
distribution follows the Poisson distribution, while for th
BA network, it follows a power law,P(k);k2g with g53.
The network whose degree distribution follows a power l
is called the scale-free~SF! network @7#. SF networks are
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abundant in real world such as the world-wide web@8–11#,
the Internet@12–15#, the citation network@16#, the author
collaboration network of scientific papers@17#, and the meta-
bolic networks in biological organisms@18#.

While a lot of models have been introduced to descr
SF networks in real world, most of them are stochastic m
els. However, a couple of models recently introduced
Barabási, Ravasz, and Vicsek~BRV! @19#, and Dorogovtsev
and Mendes~DM! @20# are deterministic. In general, dete
ministic model is useful for investigating analytically no
only topological features of SF networks in detail, but al
dynamical problems on the networks. Both the BRV and
DM models are meaningful as not only the first attempts
deterministic SF networks, but also as the ones constru
in a hierarchical way, so that analytic treatments can be m
easily using recursive relations derived from the two str
tures in successive generations. In the BRV model, howe
the mean shortest-path distance between two vertices a
aged over all pairs, called the diameter, is independen
system size. Thus, the BRV model may be relevant to so
specific systems such as the metabolic networks@18#, where
the diameter is independent of system size. In this paper
introduce another type of the deterministic model for the
network, which is also constructed in a hierarchical way. O
model is based on almost the same idea as that of the
model. While the DM model starts from a triangle, o
model does from a tree structure. This difference makes
easily modify the model into more general cases such
loopless or loop structures, and the ones with a various n
ber of branches. Moreover, the simplicity of our model e
ables one to obtain the analytic solution for the degree
tribution and the diameter. In particular, our model include
control parameter, so that by tuning the parameter, we
obtain SF networks with a variety of degree exponents in
range, 2,g,3. Therefore our model should be useful
represent various SF networks in real world, in particular,
a tree shape. For example, the hierarchical tree structu
known as ‘‘structural hole’’ in sociology, a typical type o
©2002 The American Physical Society01-1
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social networks. Since the model of the structural hole
used for investigating the centrality in social networks@21#,
and moreover recent studies show that social systems
exhibit SF behaviors@22#, our model could be used fo
studying social systems. Moreover, the internet structure
the autonomous level is effectively of a tree-type@23#, so
that the data packet transport on the internet can be un
stood analytically via our deterministic model.

This paper is organized as follows. In Sec. II, we w
introduce deterministic models specifically for tree and lo
structures, respectively. In Sec. III, analytic treatments w
be performed for the deterministic models introduced in S
II. The final section will be devoted to conclusions and d
cussions.

II. DETERMINISTIC MODEL

It is known that the number of vertices in most of S
networks in real world increases with time exponentia
Thus, our deterministic model is constructed in this evolv
way, that is, the number of vertices increases exponent
with time, where each already existing vertex generates
offspring, and connects them. Thus, vertices are ordered
erarchically. On the other hand, for real networks, it
known @24,25# that the PA probabilityP i8 in Eq. ~1! is modi-
fied into

P i85
ki1m

(
j

kj1m

, ~2!

wherem accounts for some randomness in connecting ed
To take into account of this modified PA behavior, we intr
duce two rules, called the addition and the multiplicati
rule, in the deterministic model, depending on how new v
tices are generated from each old vertex. The details on
rules will be described below.

A. Tree structure

The network forms a tree structure when new vertic
generated from an old vertex are connected to their pa
only.

1. The addition rule

In the case of the addition rule, at each time step, a c
stant number of new vertices, say,m new vertices, are gen
erated from each already existing vertex, and they are c
nected to their parent only. Then the degreeki(t) at vertexi
at time t evolves as

ki~ t !5ki~ t21!1m, ~3!

so that

ki~ t !511m~ t2t i !, ~4!

for t>t i , wheret i is its birth time. On the other hand, th
number of vertices newly born at timet i becomes
05610
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LA~ t i !5H 1 for t i50

m~11m! t i21 for t i>1,
~5!

where the subscriptA stands for the addition rule. Thus, th
total number of verticesNA(t) present at timet is

NA~ t !5 (
t i50

t

LA~ t i !5~11m! t. ~6!

The definition of this model is illustrated schematically
Fig. 1.

2. The multiplication rule

In the case of the multiplication rule, the number of o
spring generated from each old vertex is not the same, b
depends on the degree of each vertex. Letki(t) be the degree
of a given vertexi at time t. Under the multiplication rule,
the number of offspring newly generated at timet from the
vertexi is proportional to its degree at the previous time, i.
(m21)ki(t21), wherem21 is a proportionality constant
Thus the degree of the vertexi increases by the factorm at
each time step, that is,

ki~ t !5mki~ t21! ~7!

for t>2. The degree of the vertex, born att50 (t51), at
time t51 is k0(1)5m „k1(1)51…. Then the degree of the
vertex i at time t becomes

ki~ t !5mt2t i, ~8!

wheret i means the birth time of the vertexi. Next, letLM(t)
be the total number of vertices newly born at timet, where
the subscriptM stands for the multiplication rule. Then w
have the following relation:

LM~ t i !5 (
t j 50

t i21

~m21!mti212t jLM~ t j ! ~9!

for t i>2 with LM(0)51 and LM(1)5m. Then we obtain
LM(t i) in a closed form to be

FIG. 1. Tree structures in the addition rule withm53 at t50, 1,
and 2. The vertices born att50, 1 and 2 are denoted byd, n and
s, respectively.
1-2
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LM~ t i !5H 1 if t i50

m if t i51

2m~m21!~2m21! t i22 if t i>2.

~10!

The total number of verticesNM(t) at time t is given by

NM~ t !5 (
t i50

t

LM~ t i !5H 1 if t50

11m~2m21! t21 if t>1.
~11!

The definition of this model is illustrated schematically
Fig. 2.

B. Loop structure

A loop structure can be generated when each newly b
vertex is connected to both its parent and grandparent v
ces as illustrated in Fig. 3. In particular, if the parent o
certain vertex is the vertex born att50, then the grandparen
is regarded as one of the vertices born att51. This rule is
valid for both cases of the addition and the multiplicati
rule.

FIG. 2. Tree structures in the multiplication rule withm53 at
t50, 1, and 2. A0 (d) stands for the vertex at center born att
50. A1,0 (n) is the offspring of A0 born at t51. A2,0 and A2,1,0

(s) are the offspring of A0 and A1,0, respectively, born att52.

FIG. 3. Loop structure in the multiplication rule withm53 at
t52. The vertices with the symbolsd, n, and s are born att
50, 1, and 2, respectively.
05610
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III. ANALYTIC SOLUTION

A. The degree distribution for the tree structure

Since the degree of each vertex has been obtained ex
itly as in Eqs.~4! and ~8! and the degree of each vertex
ordered with time, one can obtain the degree distribution
its cumulative distribution, i.e.,

P~k!5P~ki.k21!2P~ki.k!, ~12!

or

P~k!5
]@12P~ki.k!#

]k
. ~13!

The details of the analytic treatments are given as follow

1. The addition rule

Using the fact,PA,T(ki.k)5PA,T(t i,t5t2@k21#/m),
where the subscriptT means the tree structure, we obtain th

PA,T~ki.k!5 (
t i50

t21
LA~ t i !

NA~ t !

5
1

~11m! t
1

m

~11m! t11 (
t i51

t21

~11m! t i

5~11m!2(k21)/m. ~14!

Using the relation thatPA,T(k)5PA,T(ki.k21)2PA,T(ki
.k), we obtain

PA,T~k!5~11m!2(k21)/m@~11m!1/m21#. ~15!

So, the degree distributionPA,T(k) decays exponentially
with k under the addition rule.

2. The multiplication rule

Since the degreeki has been obtained explicitly as a fun
tion of time in Eq.~8!, PM ,T(ki.k) is replaced byPM ,T(t i
,t), wheret5t2 ln k/ln m. Thus,

PM ,T~ki.k!5 (
t i50

t21
LM~ t i !

NM~ t !

5
11m

11m~2m21! t21

1 (
t i52

t21
2~m21!~2m21! t i22

11m~2m21! t21

}k2 ln(2m21)/ln m. ~16!

Thus the degree distribution is obtained to be

PM ,T~k!5
]@12PM ,T~ki.k!#

]k
}k2g(m), ~17!

where
1-3
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g~m!511 ln~2m21!/ ln m. ~18!

In the limit of m→1, one can getg(1)53, while asm goes
to infinity, one getsg(`)52. Thus by tuning the paramete
m, one can get a variety of SF networks with different exp
nents in the range, 2,g,3.

B. The degree distribution for the loop structure

1. The addition rule

Let ni(t) be the degree of vertexi, born at timet i , at time
t for the loop structure. As a new vertex is connected to
parent and grandparent, each old vertex is connected tom
children andm2 grandchildren. So, Eq.~3! is modified as

ni~ t !5ni~ t21!1~m1m2!. ~19!

Taking the same steps as for the loopless case, we obtai
degree distribution following the exponential decay,

PA,L~n!}~11m1m2!2n/(m1m2), ~20!

where the subscriptL means the loop structure.

2. The multiplication rule

Let ni(t) be the degree of vertexi at time t for the loop
structure in the multiplicative rule. The degree of vertexi can
be obtained via the relation,

ni~ t !5ni~ t21!1~m21!ki~ t21!1~m21!2ki~ t22!,
~21!

where the second term on the right hand side of the ab
equation results from the children of the vertexi, and the
third term from the grandchildren of the vertexi. Thus, the
degree at the vertexi becomes

ni~ t !'S 2m21

m Dmt2t i, ~22!

for t@t i . Since the degreeni(t) depends on timet similarly
to Eq. ~8!, we can apply Eq.~16! even to the loop case
except that t is replaced by t5t1 ln(2m21)/lnm21
2ln n/ln m. This replacement, however, does not affect
degree exponent at all. Thus, even for the loop structure,
degree exponent is reduced to the same value,g51
1 ln(2m21)/lnm as the one in Eq.~18!.

C. The diameter for the tree structure

The diameterd(t) is defined as a chemical distance b
tween two distinct vertices along the shortest path avera
over all pairs of vertices at timet, that is,

d~ t !5
1

N~ t !„N~ t !21… (
iÞ j

di , j~ t !, ~23!

wheredi , j (t) is the chemical distance between vertexi to j.
For simplicity, letD(t) denote the sum of the chemical di
tances between two vertices over all pairs, that is,
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D~ t !5(
iÞ j

di , j~ t !. ~24!

It is not easy to derive a closed formula forD(t) for both the
tree and the loop structures, however, we listD(t) for the
tree structure at a few early times in the Appendix. We tra
the formula for the tree structure in two limiting cases,m
→0 andm→`, as follows.

Let us first consider the case ofm→1. For this case, we
denotem511e ande!1. The total number of nodesNM(t)
at time t is given by

NM~ t !511~11e!~112e! t21'21~2t21!e1O~e2!,

~25!

for large t. So, ln(NM21)'(2t21)e within the first order of
e. Moreover, the sum of all chemical distancesD(t) be-
comes

D~ t !'214~2t21!e1O~e2!. ~26!

Using the relation in Eq.~23!, we can obtain the averag
distance to be

d5
214~2t21!e

213~2t21!e
1O~e2!,

'
214 ln~NM21!

213 ln~NM21!
1O~e2!, ~27!

Therefore, the diameter converges to 4/3 in the limit
NM→`.

Next, we consider the case ofm→`. In this case, the
term in the highest order ofm could be dominant, so that w
trace the coefficient of the term in the highest order ofm as
a function of time.

D~0!50,

D~1!52m21 lower order terms,

D~2!5@~213!1~314!#m41 lower order terms,

D~3!5@~2123314!123~3123415!1~41235

16!#m61 lower order terms,

D~4!5@~21333133415!13~31334133516!

13~41335133617!1~513361337

18!#m81 lower order terms,

A

D~ t11!5 (
p50

t S t
pD (

k50

t S t
kD ~k1p12!m2(t11)

1 lower order terms. ~28!

Using the formula@26#,
1-4
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(
k50

t

kS t
kD5t2t21, ~29!

D(t) in the highest order ofm is obtained explicitly to be

D~ t !' (
p50

t21 S t21
p D (

k50

t21 S t21
k D ~k1p12!m2t

5 (
p50

t21 S t21
p Dm2t@ t2112~21p!#2t22

5~ t11!22t22m2t. ~30!

On the other hand, using Eq.~11!,

NM~ t !@NM~ t !21#'22t22m2t. ~31!

Therefore, the diameterd(t) at time t becomes simply

d~ t !'t11'
ln~NM21!

ln~2m21!
11. ~32!

Thus, for largeNM , the above equation is rewritten simp
as

d~NM !; ln NM / ln k̄ ~33!

with the mean degreek̄'2m, which confirms the small-
world behavior.

IV. CONCLUSIONS AND DISCUSSIONS

We have introduced a deterministic model for the sca
free network, which is constructed in a hierarchical way.
each time step, each already existing vertex produces its
05610
-
t
ff-

spring, whose number is proportional to the degree of
vertex. Depending on whether each new offspring is c
nected to only one or more than one old vertices, the netw
forms either a tree structure or a loop structure, respectiv
We have obtained the analytic solution for the degree dis
bution and the diameter explicitly for the determinist
model. By tuning a control parameter in the model, we c
adjust the degree exponent in the range, 2,g,3. Thus this
model can represent a variety of SF networks in real wo
Moreover, we obtained the diameter of the determinis
model analytically to bed; ln N/ln k̄, whereN is the system
size andk̄ is the mean degree. Since the network is genera
in a hierarchical way, it is expected that a variety of physi
problems can be solved through this deterministic model
constructing recursive relations derived from two structu
in successive generations. On the other hand, the deter
istic model has a shortcoming that it does not include a
long-ranged edge, connecting two vertices belonging to
ferent branches separated att50. Thus, this model can be
used only for the model for a tree structure. Despite t
shortcoming, we think that our deterministic model cou
offer a guide toward generating more realistic determinis
model for SF networks.
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APPENDIX

The closed formula for the sum of the chemical distan
between two verticesD(t) is shown for 0<t<3.
D~ t50!50,

D~ t51!5N0m1N1,0@112~m21!#,

D~ t52!5N0@m212m~m21!#1N1,0@m12m~m21!12~m21!13~m21!~m21!#1N1,0@112m222~m11!12m

13m~m21!#1N2,1,0@112~m21!13~m221!14~m21!2#,

D~ t53!5N0@m312~m22m!~m21!12m~m21!12m~m22m!13m~m21!~m21!#1N1,0@1m212m32212~m21!

3~m21!13$~m21!21~m22m!~m21!1~m21!~m22m!%14~m21!3#1N2,0„m12~m321!

13$@m~m21!21#~m21!1m~m22m!1m~m21!%14m~m21!2
…1N2,1,0@m12~m221!13$~m321!

1~m21!~m22!%14$~m22m!~m21!1~m21!21~m21!~m22m!%15~m21!3#1N3,0@112~m321!

13$m2~m21!1m~m22m!%14m~m21!2#1N3,2,0„112~m21!13~m321!14$@m~m21!21#~m21!

1m~m221!%15m~m21!2
…1N3,1,0@112~m221!13$~m321!1~m21!~m21!%14$~m221!~m21!1~m21!

3~m22m!%15~m21!3#1N3,2,1,0@112~m21!13~m221!14$~m321!1~m21!~m2121!%

15$~m221!~m21!1~m21!~m221!%16~m21!3#,

A

1-5
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where

N051,

N1,05m,

N2,05m~m21!,

N2,1,05m~m21!,

N3,05m2~m21!,
e

om

.

05610
N3,1,05m2~m21!,

N3,2,05m~m21!2,

and

N3,2,1,05m~m21!2.

Ni ,$ j % means the number of the vertices denoted byAi ,$ j % in
Fig. 2, where the first indexi stands for its birth time and the
rest indices$j% are its parent vertex.
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