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Harmonic forcing of an extended oscillatory system: Homogeneous and periodic solutions
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In this paper we study the effect of external harmonic forcing on a one-dimensional oscillatory system
described by the complex Ginzburg-Landau equati@GLE). For a sufficiently large forcing amplitude, a
homogeneous state with no spatial structure is observed. The state becomes unstable to a spatially periodic
“stripe” state via a supercritical bifurcation as the forcing amplitude decreases. An approximate phase equation
is derived, and an analytic solution for the stripe state is obtained, through which the asymmetric behavior of
the stability border of the state is explained. The phase equation, in particular the analytic solution, is found to
be very useful in understanding the stability borders of the homogeneous and stripe states of the forced CGLE.
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[. INTRODUCTION exist a few studies on forced CGLE, and diverse behaviors
are observed depending on several factors, such as the spatial
Nonequilibrium pattern formation is widely observed in dimension, the mode of the frequency locking, and the be-
many physical, chemical, and biological systems. Significanfiavior of the corresponding unforced systg8y8—16. How-
progresses have been made in this field during the last fe®Ver, We do not even know what behaviors are possible, let
decades. For example, it has been found that nonequilibriurﬁlone understand them.

patterns can be grouped into a few universality clagbe$]. Even the simplest case of the 1:1 locking in one dimen-

In manv cases. such a svstem is in constant interaction .tﬁion displays a wide variety of behaviors. At large amplitude
) y » Su Y IS : 1on Withf the forcing, a homogeneous state with no spatial structure
its environment, and understanding the effect of extrinsig

erturbation is of great theoretical and practical im ortanceS stable. Chatet al. found that the homogeneous state be-
Fn articular, it is igrlwterestin to stud thg deformatign of ancomes unstable o a perl_odlc stripe” or kmk—bre:admg

pa : gu y state as the forcing amplitude decreases, and a “turbulent
existing pattern or the formation of a new pattern under arsynchronized” state—chaotic with its average phase is
external forcing. Our understanding in such a direction is fafocked to that of the forcing—can appear, as the amplitude
from complete. decreases furthdd.3].

Petrov et al, and later Lin etal, studied the light- In this paper, we study in detail the homogeneous and
sensitive Belousov-ZhabotinskBZ) reaction in an oscilla-  stripe states of one-dimensional forced CGLE around the 1:1
tory regime in the presence of a periodic modulation of theocking. There are two borders regarding the homogeneous
intensity of illumination[4,5]. They observed “entrainment state(1) the stability border, below which the state loses its
bands” in which the system is frequency locked. Differentstability, and(2) the existence border, below which a homo-
spatial patterns—stationary fronts, standing waves of labygeneous solution does not exist. In general, the existence and
rinth, and more complex shapes—are observed within thetability borders do not coincide. It is known that the stability
bands. In a similar BZ reaction setup, Vanegal. studied ~ border of the homogeneous state lacks a reflection symmetry
spatial patterns and transitions among them in detail, an@round thev=« line. Here,v is the difference between the
observed localized irregular/standing clusters as well as thgatural and external frequencies, amds a nonlinear detun-
above pattern§s, 7). ing parameter. We find the asymmetry can be explained by

Continuum models of forced pattern forming systems carjfhe, linear sta_bility of the state. Also, the condition under
be grouped into ones based on a kinetic model or on aiyhich the existence qnd stability borders. of the homoge-
amplitude equation. In the first group, an unforced system jfleous state coincide is found. The stability border of the

- tripe state also lacks a reflection symmetry. An approximate
modeled by a coupled kinetic model, such as the Brusselat:%hase equation is derived from the forced CGLE, and it is

Oregonator or FitzHugh-Nagumo model, and parameters i ound that its qualitative behavior is identical to that of the

;he _model are5 QOduolatfﬁ to tilmurI]ate dthe effectb(_)ff extte_rn riginal equation, at least in the region of present interest. An
orcing (e.g.,[5,8]). On the other hand, near a bifurcation 55 \vtic expression of the stripe state for the phase equation

onset of a pattern, small differences among systems become gptained, which is used to explain the asymmetry of the
irrelevant, and they are all described by one of a few univerygrger of the stripe state.

sal equations. If the bifurcation is supercritical and oscilla-

tory, and if the most unstable wave number is zero, the comH. FORCED COMPLEX GINZBURG-LANDAU EQUATION
plex Ginzburg-Landau equatiqi€GLE) is the equation for

the class of systems. In the presence of an external periodic
modulation, it is shown that the CGLE with an additional Near the stability border of a homogeneous state of an
forcing term becomes the appropriate equafid/®]. There extended pattern forming system, the time evolution in a

A. Complex Ginzburg-Landau equation
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large spatial and temporal scale is given by one of a few 0.25
universal equationgl—3]. If the instability is oscillatory and homogeneous (existence)
supercritical, and the wave number of the most unstable 02 homogeneous  (stability) -~ §
mode is Zero, the CGLE, stripe  (stability) -~ -
15 ¢ g
HA=A—(1+ia)|A]PA+(1+iB)V3A ) @ o1
0.1 f
is the governing equation. Her&,is complex amplitude, and
a,B are real constants. The behavior of the CGLE is rela- 0.05 |
tively well understood, especially in one and two dimensions
[17-19. It has plane wave solutions, which are stable only if 0
1+ «B>0. Otherwise, the Benjamin-Feir instability sets in, -1
making the solutions unstable. Near the unstable side of the
stability border ( aB=0 line), “phase turbulence” is ob- 0.25
served, which is characterized by disordered cellular struc- homogeneous (existence)
ture and the absence of a defefA|=0). “Defect turbu- 02 [ homogeneous  (stability) -
lence” is observed further in the unstable region, where stripe  (stability) -
constant creation and annihilation of defects is observed 0.15 1
[20,21]. In this paper, the value af=—3/4,8=2 is mainly m
used, which is in the phase turbulence region. 0.1}
B. Homogeneous state 0.05 N, -
Consider the case wherein a sinusoidal forcing is applied 0 , e ,(b)
to the system of Eq(l). It was shown that an additional -1 0.9 08 0.7 0.6 05
forcing term should be included, and its form can be deter- v

mined from the conditions of the spatial and temporal trans- . .
lation invariance[9]. For a harmonFi)C forcingnearpthe 11 FIG. 1. (a) The existence and stability borders of the homoge-
h i ’ S ) neous state for the harmonically forced CGLE Ef) with «
tongus, the resulting equation is =—3/4 andB=2. The stability border of the stripe state is also
_ ; _ ; 2 ; 2 shown. Note that the stability borders are not symmetric toithe
RA=(L+in)A=(1+i2)APA+(1+iIBVA+B, () =« line. (b) Corresponding borders for the phase equation(8x.

. . . with a=—3/4, B=2, andRy=1.
where v is the difference between the natural and forcing “ P 0

frequencies, an@ is related to the amplitude of the forcing. ) (k)=1— 2RZ— K2+ \J(1+ a)RE— (v—2aR%— pKk?)?,
We first seek for the homogeneous solution of Ej. In 5)
polar coordinate$A=R exp(®)], the equation becomes

which has the maximum value of

1
Ama=1—2R3— E[V—{2a+ V(1+ ) (1+ B2)IRE]
(6)
atk=Kknax, corresponding to the most unstable mode, which

- . is given by
For a sufficiently largeB, the system is expected to lock to

% R=R—R3+B cos® + R, — BR®,— 28R, P, — RDZ,

Ro®=vR— aR3-Bsin® + SR+ RD,,+ 2R, P,
— BRD2, 3)

the forcing. Its homogeneous solution is 1+ a?
B2 =v—| 2a+ 5| RS )
B cos®o= — Ry(1—R2), B
The stability bordeBg of the homogeneous solution is ob-
B sin®,=Ry(v—aR3), (4)  tained by solving numericall ,,,,=0, which is also shown
in Fig. 1(a).

which can have one or three roots depending on the param- A distinct feature of the stability border is that it is not
eters. For the three root case, only the one corresponding gymmetric to thev=a line. As shown in the figure, the
the largesR, is stable. The region of the parameter space irdifference between the existence and the stability border is
which a locked homogeneous solution exists is shown in Figsmaller at thev<<a side. Moreover, the difference vanishes
1(a). for v<v_ with v,=—1.067. This feature can be understood
We apply the linear stability analysis to the homogeneoudrom the » dependence ¢y, Which is given by Eq(7). It
solution[13], where the behavior of a small deviation from is found thatk,., is an increasing function af: it is zero for
the solutionr=R—R, and ¢=®—-d, is studied. The v=v.=[2a+ (1+ ?)/(1+B)]R%, and proportional to
growth rate of the mode with wave numiers found to be  \/v— v, slightly abover.. Since the wave number of the
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most unstable mode is zero fer v, and since the solution 0.08 =
Eq. (4) with the largestR, is stable to a zero wave number .
perturbation, the existence of the homogeneous solution 0.06 | ' \“*\ measured
guarantees its stability. ., fit
As will be discussed later, an approximate phase equation ’ *‘:\
is derived from Eq.(2), which gives an additional insight B 004} ‘3\:\
into the stability border. The origin of the instability of the \\
homogeneous state of the phase equation can be traced to a 0.02 | Ay
Laplacian term, whose coefficient is a decreasing function of @) *‘3
v, and becomes negative ﬂi Thus the homogeneous state ‘ . ‘ i
is stable forr<wv?, and it becomes more unstable @sn- 0017 0018 0019 0020 0021 0022
creases. B
0.16
C. Stripe state *¢+ measured
The behavior below the stability border is investigated 0127 Eq. (15) e

numerically. The forced CGLE in one dimension is inte- T
grated using a pseudospectral method for variouend B & 008 |
[22]. The spatial resolutiod x and time step\t used are 0.1 AN
and 0.01, respectively. Also, a periodic boundary condition is 004 | \%
used. For most cases, the linear size of the system is chosen (b) k
to be 4096, and the time interval of<2L0* is used. Larger \i
systems for longer intervals are also studied, and no change %01 0(;14 00'18 00‘22 '0626
in the behavior is observed. ' ' ' B ' '

The numerical integrations confirm the prediction that the

homogeneous state is stable above the stability border. It is FIG. 2. (a) Modulation amplitudes¢ of the stripe solution of
found that the state undergoes a supercritical bifurcation to the forced CGLHEQ. (2)] is shown againsB for v=—0.75. Also
spatially periodic static “stripe” state a8 decreases below shown is a square root fiDyB,—B with D=1.25 and By
the border, and the modulation amplitude of the state, definee 0.02101.(b) 5¢ of the stripe solution of the phase equat|&.

as 8¢=((¢—(d),)?)x behaves as/Bs—B close to the

(9)] is shown forv=—0.75. Analytic expression Eq15) with the

border[Fig. 2@)]. The wave number of the stripe state is coefficients given by Eq(17) is found to be a good approximation.

found to agree very well witk,,,, of Eq. (7), especially near

the border. In order to check how the nature of the transitiothan that forr. The variabler is then slaved tap. Starting
depends on the unforced dynamics, the transition from a hdrom Eq. (3), it can be shown that

mogeneous state is examined for four different values of
(a,8): (—2,2), (—1.11,1), -2,0), and 0.75,0.5). Itis

found that a supercritical transition to the stripe state is ob-
served for the first two cases belonging to the Benjamin-Feir
(BF) unstable region, while a transition to a disordered struc-

Ro 2 B 2
“3R-1 (1-Rp) + Ro cog P+ @) — Bdux— bx|

®

ture is observed for the other two cases belonging to the Bwhere additional terms higher than the second ordef are

stable region.

As B decreases further, the stripe state becomes unstabiee phase part of Eq3),

to a fluctuating stripe or “kink-breeding” state, depending on
v [13]. The stability border of the stripe state is determined,
and is plotted in Fig. (). Again, the border is not symmetric
to the v=a line. The region of the stripe state is much
broader on the> « side. Moreover, it extends to the region

ignored, andB is assumed to be small. Substituting this to

Rydip=vRy— aR3—B\1+a?sin(®q+ ¢+ 5)

+DPi+ Cyxt Ahynxt €,

(€)

where a locked homogeneous state does not exist. The orighherea,b,c.d,e, 6 are constants depending en 8, v, and

of the asymmetry will be discussed using a phase equatiofito- SINCeRg is 1 atv=«, and is a slowly varying function

and is found to be very different from the case of the homoOf ¥, it is expected that setting,=1 does not change the
geneous state. qualitative behavior of the equation. On the other hand, the

constants are simplified to

IIl. PHASE EQUATION

a=a—(v—a)l/2, (10

A. Derivation

An approximate phase equation can be derived from Eq. b=a—-p—(v—-a)/2,
(2) as follows. Define small variables=R— R, and ¢p=®
—®,, and assume that the time scale tris much larger c=1+aB—B(v—a)l2,
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y . borders meet for<»?. Since the wave number of the most
y = sin(® + 3) ¢ ® .
. u unstable mode should be zerowat v, one arrives at
@ Dy
v>o
s 2+3apB
vl= 5 (14
0 /-8 (0]

For the above values af and 8, v¢= —5/4, which is com-
parable to the value of; for the forced CGLE.
v<a The simple structure of the phase equation makes its in-
terpretation simple. The reason for the instability is thean
be negative, while theb,,,, term always tries to suppress
such an instability. The value af remains positive forv

FIG. 3. A schematic view of the determination of the homoge-<»¢, and the homogeneous state is stable.vAscreases
neous solution of the phase equatidfg. (9)]: There exist one further,c becomes negative. Sincds a decreasing function
stable®g and one unstablég solutions. Here, the one with posi- of v, the instability becomes stronger with increasing
tive cos(Pq+9) is stable. Forv>a,®>®g, while dy<dg for  which explains the fact that the difference between the exis-

v<a. tence and stability borders increases with
— 2
d=—p%2, C. Stripe state
e=0, The behavior of the phase equation below the stability
border is studied numerically. As one crosses the border, the
s=tan (a). homogeneous state goes through a supercritical bifurcation

to a stripe state, and the modulation amplitudi)
For the remainder of the papd®, will be set to 1 inthe = [((¢—(¢),)?), behaves as/BZ—B close to the border.
equation. Note that Eq9) is a generalized version of the A typical dependence 0f¢ on B is shown in Fig. 2b),
phase equation obtained by Coullet and Emilsson, which ighere, = —0.75. AsB decreases further, the stripe state be-
derived for the special case of=a [9]. AlS0, ¢, t€TM IS comes unstable. The stability border of the stripe state deter-
added for the stability of the solution in the phase and defecined numerically is plotted in Fig.(). Again, the border

turbulence regions. is not symmetric to the/=« line, and even extends below
the existence border of the homogeneous state. Although the
B. Homogeneous state phase equation is simpler than the forced CGLE, their quali-

The phase equation is studied in a way parallel to thdative behaviors are essentially the same, at least for the ho-

analysis of the forced CGLE. Homogeneous states, given bj/ogeneous and stripe states. _
The simple structure of the phase equation allows an ana-

lytic expression for the stripe solution. The solution may be

V—a
dy=sin" Y ———| -4, 11 expanded in terms of harmonic functions
0 ( BVLra? U e
d(X)= 1+ Sy sin(kgx) + C4 cog kox) + S, sin(2kgx)
exist for B=(v— a)/y1+a?. There exist two solutiond}
and®g, in the[0,27] interval satisfying Eq(11) as shown +C; co92kox), (15

in Fig. 3. The®] solution is stable under homogeneous per- . . . .
g 0 g P where higher harmonics are ignorég.is the wave number

turbation, while theby solution is unstable. A linear stability of the most unstable mode. and the coeffici@nican alwavs
analysis of the stable homogeneous state shows that trf)% set to 0 by choosin ar{a ropriate ori irE: Substitu>t/in it
maximum growth rate is y g pprop gin. g

in Eq. (9), we find
A= —BV1+a%coq o+ ) —c?/4d (12) S5,-0
for the mode with wave numbée? = /c/2d (if c<0). This

state is found to be linearly stable above the stability border v—a+(S2+4C3bc/ad

¢ inhic A Sin(®y+ ¢+ 6)= ,
BZ, which is given as N(@o+ ¢1+9) BM(l—(SiwLC%)M)
(c?14d)?+ (v—a)?
BS= \/ 17 a2 : (13 @y —By1+a?cog®y+ ¢+ 6)+2c?/d
=42

Byl-+a?sin(®,+ ¢,+8)—bc/d
The existence and stability borders are plotted in Figp) 1 o

for a=—3/4,3=2. Note that the shapes of the borders are N e 2
qualitatively the same as those of the forced CGLE: the sta- C,=2 Bylta cosPot it d)—cC /4d, (16)
bility border is asymmetric to the=« line, and the two ByV1+a?sin(®q+ ¢+ 8)+2bc/d
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which can be solved numerically f@;, C,, and ¢,. Near 5
the stability border, an approximate analytic solution can ~ Dy ——
be obtained, which is AT Dy ]
~~~~~ x. — measured -
S, JB?—B, g3t T S
=
=% 72 L
CoxSE,
I
1 ( bc) @ " . ‘ . @
P B T alcosdgra) | d) @ 076 075 074 073 072 071 07
v
where the proportionality constants are rather complex ex-
cept for the case ofh,. The analytic solution agrees well 5 s
with the results using numerical integration: as shown in Fig. ‘Dg I
2(b), the modulation amplitudé¢ vs B curve obtained from 47 e Dy
the above expression is in good agreement with the corre- 3L i —— e measured -
sponding numerical values. 2 e
The analytic solution confirms not only the square root & 5L i
dependence oAy, but it also provides an explanation forthe | =
asymmetry of the stability border of the stripe solution. 1t e
Shown in Fig. 4a) are two homogeneous solutions—stable (b)
@3 and unstablebg—of the phase equation witB a little e : . : .
below the stability border. AB decreases from the homoge- 076 -075 074 073 072 071 07
neous toward the stripe region, the modulation amplitude v

around & increases \.Nith decreasing. For sufficient!y FIG. 4. (a) The stabled and unstablebg homogeneous solu-
Sm_a" B, d’(x). at certainx approache.s the un_stable fixed tions of the phase equatidiq. (9)] just below the stability border
point ®g, which then makes the stripe solution unstable.(g—g?=5x 10-3) are plotted against. The average phase of the
Note thate, in Eq.(17) is nonzero—it is negative whemis  stripe solution of the equation for the sarBds also plotted. The
not very different froma. Thus, the average phase of a stripeaverage phase is smaller thdri, which moves away fronito-
state is shifted toward a value smaller thhj. The average ward ®§ for v>a (v<e). (b) The same plot for the forced CGLE.
phase of the stripe solution measured using numerical inteFhe qualitative behavior is identical.
gration is also shown, which confirms the shift. As shown in
Fig. 3, the shift moves the stripe solution towaf@way a supercritical bifurcation as the forcing amplitude decreases.
from) @y for v<a (v>a), resulting in the asymmetrjga  We obtained an analytic solution for the stripe state of the
related argument is given if5]). The situation is entirely phase equation, through which an argument for the asymme-
similar for the forced CGLE. The phase of the stable andry of the stability border of the state is formulated. Bs
unstable solution is plotted againstin Fig. 4(b) [23]. Also  decreases further, more complex behaviors, such as, the kink
plotted is the average phase of the stripe solution. Heréreeding, “depinning,” and “roughening,” are expected,
again, the average phase is shifted tow@waay from) the  which are currently under investigation.
unstable solution fov<a (v>a).
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