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Harmonic forcing of an extended oscillatory system: Homogeneous and periodic solutions
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In this paper we study the effect of external harmonic forcing on a one-dimensional oscillatory system
described by the complex Ginzburg-Landau equation~CGLE!. For a sufficiently large forcing amplitude, a
homogeneous state with no spatial structure is observed. The state becomes unstable to a spatially periodic
‘‘stripe’’ state via a supercritical bifurcation as the forcing amplitude decreases. An approximate phase equation
is derived, and an analytic solution for the stripe state is obtained, through which the asymmetric behavior of
the stability border of the state is explained. The phase equation, in particular the analytic solution, is found to
be very useful in understanding the stability borders of the homogeneous and stripe states of the forced CGLE.
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I. INTRODUCTION

Nonequilibrium pattern formation is widely observed
many physical, chemical, and biological systems. Signific
progresses have been made in this field during the last
decades. For example, it has been found that nonequilibr
patterns can be grouped into a few universality classes@1–3#.
In many cases, such a system is in constant interaction
its environment, and understanding the effect of extrin
perturbation is of great theoretical and practical importan
In particular, it is interesting to study the deformation of
existing pattern or the formation of a new pattern under
external forcing. Our understanding in such a direction is
from complete.

Petrov et al., and later Lin et al., studied the light-
sensitive Belousov-Zhabotinsky~BZ! reaction in an oscilla-
tory regime in the presence of a periodic modulation of
intensity of illumination@4,5#. They observed ‘‘entrainmen
bands’’ in which the system is frequency locked. Differe
spatial patterns—stationary fronts, standing waves of la
rinth, and more complex shapes—are observed within
bands. In a similar BZ reaction setup, Vanaget al. studied
spatial patterns and transitions among them in detail,
observed localized irregular/standing clusters as well as
above patterns@6,7#.

Continuum models of forced pattern forming systems c
be grouped into ones based on a kinetic model or on
amplitude equation. In the first group, an unforced system
modeled by a coupled kinetic model, such as the Brussel
Oregonator or FitzHugh-Nagumo model, and parameter
the model are modulated to simulate the effect of exter
forcing ~e.g., @5,8#!. On the other hand, near a bifurcatio
onset of a pattern, small differences among systems bec
irrelevant, and they are all described by one of a few univ
sal equations. If the bifurcation is supercritical and oscil
tory, and if the most unstable wave number is zero, the c
plex Ginzburg-Landau equation~CGLE! is the equation for
the class of systems. In the presence of an external peri
modulation, it is shown that the CGLE with an addition
forcing term becomes the appropriate equation@3,9#. There
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exist a few studies on forced CGLE, and diverse behav
are observed depending on several factors, such as the s
dimension, the mode of the frequency locking, and the
havior of the corresponding unforced system@3,9–16#. How-
ever, we do not even know what behaviors are possible
alone understand them.

Even the simplest case of the 1:1 locking in one dime
sion displays a wide variety of behaviors. At large amplitu
of the forcing, a homogeneous state with no spatial struc
is stable. Chate´ et al. found that the homogeneous state b
comes unstable to a periodic ‘‘stripe’’ or ‘‘kink-breeding
state as the forcing amplitude decreases, and a ‘‘turbu
synchronized’’ state—chaotic with its average phase
locked to that of the forcing—can appear, as the amplitu
decreases further@13#.

In this paper, we study in detail the homogeneous a
stripe states of one-dimensional forced CGLE around the
locking. There are two borders regarding the homogene
state~1! the stability border, below which the state loses
stability, and~2! the existence border, below which a hom
geneous solution does not exist. In general, the existence
stability borders do not coincide. It is known that the stabil
border of the homogeneous state lacks a reflection symm
around then5a line. Here,n is the difference between th
natural and external frequencies, anda is a nonlinear detun-
ing parameter. We find the asymmetry can be explained
the linear stability of the state. Also, the condition und
which the existence and stability borders of the homo
neous state coincide is found. The stability border of
stripe state also lacks a reflection symmetry. An approxim
phase equation is derived from the forced CGLE, and i
found that its qualitative behavior is identical to that of t
original equation, at least in the region of present interest.
analytic expression of the stripe state for the phase equa
is obtained, which is used to explain the asymmetry of
border of the stripe state.

II. FORCED COMPLEX GINZBURG-LANDAU EQUATION

A. Complex Ginzburg-Landau equation

Near the stability border of a homogeneous state of
extended pattern forming system, the time evolution in
©2002 The American Physical Society08-1
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large spatial and temporal scale is given by one of a
universal equations@1–3#. If the instability is oscillatory and
supercritical, and the wave number of the most unsta
mode is zero, the CGLE,

] t A5A2~11 ia!uAu2A1~11 ib!¹2A ~1!

is the governing equation. Here,A is complex amplitude, and
a,b are real constants. The behavior of the CGLE is re
tively well understood, especially in one and two dimensio
@17–19#. It has plane wave solutions, which are stable only
11ab.0. Otherwise, the Benjamin-Feir instability sets i
making the solutions unstable. Near the unstable side of
stability border (11ab50 line!, ‘‘phase turbulence’’ is ob-
served, which is characterized by disordered cellular str
ture and the absence of a defect (uAu50). ‘‘Defect turbu-
lence’’ is observed further in the unstable region, whe
constant creation and annihilation of defects is obser
@20,21#. In this paper, the value ofa523/4,b52 is mainly
used, which is in the phase turbulence region.

B. Homogeneous state

Consider the case wherein a sinusoidal forcing is app
to the system of Eq.~1!. It was shown that an additiona
forcing term should be included, and its form can be de
mined from the conditions of the spatial and temporal tra
lation invariance@9#. For a harmonic forcing~near the 1:1
tongue!, the resulting equation is

] t A5~11 in!A2~11 ia!uAu2A1~11 ib!¹2A1B, ~2!

where n is the difference between the natural and forci
frequencies, andB is related to the amplitude of the forcing

We first seek for the homogeneous solution of Eq.~2!. In
polar coordinates@A5R exp(iF)#, the equation becomes

] t R5R2R31B cosF1Rxx2bRFxx22bRxFx2RFx
2 ,

R] tF5nR2aR32B sinF1bRxx1RFxx12RxFx

2bRFx
2 . ~3!

For a sufficiently largeB, the system is expected to lock t
the forcing. Its homogeneous solution is

B cosF052R0~12R0
2!,

B sinF05R0~n2aR0
2!, ~4!

which can have one or three roots depending on the par
eters. For the three root case, only the one correspondin
the largestR0 is stable. The region of the parameter space
which a locked homogeneous solution exists is shown in F
1~a!.

We apply the linear stability analysis to the homogene
solution @13#, where the behavior of a small deviation fro
the solution r 5R2R0 and f5F2F0 is studied. The
growth rate of the mode with wave numberk is found to be
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l~k!5122R0
22k21A~11a2!R0

42~n22aR0
22bk2!2,

~5!

which has the maximum value of

lmax5122R0
22

1

b
@n2$2a1A~11a2!~11b2!%R0

2#

~6!

at k5kmax, corresponding to the most unstable mode, wh
is given by

bkmax
2 5n2S 2a1A11a2

11b2D R0
2 . ~7!

The stability borderBs of the homogeneous solution is ob
tained by solving numericallylmax50, which is also shown
in Fig. 1~a!.

A distinct feature of the stability border is that it is no
symmetric to then5a line. As shown in the figure, the
difference between the existence and the stability borde
smaller at then,a side. Moreover, the difference vanishe
for n<nc with nc.21.067. This feature can be understo
from then dependence ofkmax, which is given by Eq.~7!. It
is found thatkmax is an increasing function ofn: it is zero for
n<nc5@2a1A(11a2)/(11b)#R0

2, and proportional to
An2nc slightly abovenc . Since the wave number of th

FIG. 1. ~a! The existence and stability borders of the homog
neous state for the harmonically forced CGLE Eq.~2! with a
523/4 andb52. The stability border of the stripe state is als
shown. Note that the stability borders are not symmetric to thn
5a line. ~b! Corresponding borders for the phase equation Eq.~9!
with a523/4, b52, andR051.
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most unstable mode is zero forn<nc , and since the solution
Eq. ~4! with the largestR0 is stable to a zero wave numbe
perturbation, the existence of the homogeneous solu
guarantees its stability.

As will be discussed later, an approximate phase equa
is derived from Eq.~2!, which gives an additional insigh
into the stability border. The origin of the instability of th
homogeneous state of the phase equation can be traced
Laplacian term, whose coefficient is a decreasing function
n, and becomes negative atnc

f . Thus the homogeneous sta
is stable forn<nc

f , and it becomes more unstable asn in-
creases.

C. Stripe state

The behavior below the stability border is investigat
numerically. The forced CGLE in one dimension is int
grated using a pseudospectral method for variousn and B
@22#. The spatial resolutionDx and time stepDt used are 0.1
and 0.01, respectively. Also, a periodic boundary condition
used. For most cases, the linear size of the system is ch
to be 4096, and the time interval of 23104 is used. Larger
systems for longer intervals are also studied, and no cha
in the behavior is observed.

The numerical integrations confirm the prediction that
homogeneous state is stable above the stability border.
found that the state undergoes a supercritical bifurcation
spatially periodic static ‘‘stripe’’ state asB decreases below
the border, and the modulation amplitude of the state, defi
as df5A^(f2^f&x)

2&x, behaves asABs2B close to the
border @Fig. 2~a!#. The wave number of the stripe state
found to agree very well withkmax of Eq. ~7!, especially near
the border. In order to check how the nature of the transit
depends on the unforced dynamics, the transition from a
mogeneous state is examined for four different values
(a,b): (22,2), (21.11,1), (22,0), and (20.75,0.5). It is
found that a supercritical transition to the stripe state is
served for the first two cases belonging to the Benjamin-F
~BF! unstable region, while a transition to a disordered str
ture is observed for the other two cases belonging to the
stable region.

As B decreases further, the stripe state becomes uns
to a fluctuating stripe or ‘‘kink-breeding’’ state, depending
n @13#. The stability border of the stripe state is determin
and is plotted in Fig. 1~a!. Again, the border is not symmetri
to the n5a line. The region of the stripe state is muc
broader on then.a side. Moreover, it extends to the regio
where a locked homogeneous state does not exist. The o
of the asymmetry will be discussed using a phase equa
and is found to be very different from the case of the hom
geneous state.

III. PHASE EQUATION

A. Derivation

An approximate phase equation can be derived from
~2! as follows. Define small variablesr 5R2R0 andf5F
2F0, and assume that the time scale forf is much larger
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than that forr. The variabler is then slaved tof. Starting
from Eq. ~3!, it can be shown that

r 5
R0

3R0
221 F ~12R0

2!1
B

R0
cos~F01f!2bfxx2fx

2G ,
~8!

where additional terms higher than the second order inf are
ignored, andB is assumed to be small. Substituting this
the phase part of Eq.~3!,

R0] tf5nR02aR0
32BA11a2 sin~F01f1d!

1bfx
21cfxx1dfxxxx1e, ~9!

wherea,b,c,d,e,d are constants depending ona, b, n, and
R0. SinceR0 is 1 atn5a, and is a slowly varying function
of n, it is expected that settingR051 does not change th
qualitative behavior of the equation. On the other hand,
constants are simplified to

a5a2~n2a!/2, ~10!

b5a2b2~n2a!/2,

c511ab2b~n2a!/2,

FIG. 2. ~a! Modulation amplitudedf of the stripe solution of
the forced CGLE@Eq. ~2!# is shown againstB for n520.75. Also
shown is a square root fitDABs2B with D51.25 and Bs

50.021 01.~b! df of the stripe solution of the phase equation@Eq.
~9!# is shown forn520.75. Analytic expression Eq.~15! with the
coefficients given by Eq.~17! is found to be a good approximation
8-3
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d52b2/2,

e50,

d5tan21~a!.

For the remainder of the paper,R0 will be set to 1 in the
equation. Note that Eq.~9! is a generalized version of th
phase equation obtained by Coullet and Emilsson, whic
derived for the special case ofn.a @9#. Also, fxxxx term is
added for the stability of the solution in the phase and de
turbulence regions.

B. Homogeneous state

The phase equation is studied in a way parallel to
analysis of the forced CGLE. Homogeneous states, given

F05sin21S n2a

BA11a2D 2d, ~11!

exist for B>(n2a)/A11a2. There exist two solutionsF0
s

andF0
u , in the @0,2p# interval satisfying Eq.~11! as shown

in Fig. 3. TheF0
s solution is stable under homogeneous p

turbation, while theF0
u solution is unstable. A linear stability

analysis of the stable homogeneous state shows that
maximum growth rate is

lmax
f 52BA11a2 cos~F01d!2c2/4d ~12!

for the mode with wave numberkmax
f 5Ac/2d ~if c<0). This

state is found to be linearly stable above the stability bor
Bs

f , which is given as

Bs
f5A~c2/4d!21~n2a!2

11a2 . ~13!

The existence and stability borders are plotted in Fig. 1~b!
for a523/4,b52. Note that the shapes of the borders a
qualitatively the same as those of the forced CGLE: the
bility border is asymmetric to then5a line, and the two

FIG. 3. A schematic view of the determination of the homog
neous solution of the phase equation@Eq. ~9!#: There exist one
stableF0

s and one unstableF0
u solutions. Here, the one with pos

tive cos(F01d) is stable. Forn.a,F0
u.F0

s , while F0
u,F0

s for
n,a.
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borders meet forn<nc
f . Since the wave number of the mo

unstable mode should be zero atn5nc
f , one arrives at

nc
f5

213ab

b
. ~14!

For the above values ofa andb, nc
f525/4, which is com-

parable to the value ofnc for the forced CGLE.
The simple structure of the phase equation makes its

terpretation simple. The reason for the instability is thatc can
be negative, while thefxxxx term always tries to suppres
such an instability. The value ofc remains positive forn
,nc

f , and the homogeneous state is stable. Asn increases
further,c becomes negative. Sincec is a decreasing function
of n, the instability becomes stronger with increasingn,
which explains the fact that the difference between the e
tence and stability borders increases withn.

C. Stripe state

The behavior of the phase equation below the stabi
border is studied numerically. As one crosses the border,
homogeneous state goes through a supercritical bifurca
to a stripe state, and the modulation amplitudedf
5A^(f2^f&x)

2&x behaves asABs
f2B close to the border.

A typical dependence ofdf on B is shown in Fig. 2~b!,
wheren520.75. AsB decreases further, the stripe state b
comes unstable. The stability border of the stripe state de
mined numerically is plotted in Fig. 1~b!. Again, the border
is not symmetric to then5a line, and even extends below
the existence border of the homogeneous state. Although
phase equation is simpler than the forced CGLE, their qu
tative behaviors are essentially the same, at least for the
mogeneous and stripe states.

The simple structure of the phase equation allows an a
lytic expression for the stripe solution. The solution may
expanded in terms of harmonic functions

f~x!5f11S1 sin~k0x!1C1 cos~k0x!1S2 sin~2k0x!

1C2 cos~2k0x!, ~15!

where higher harmonics are ignored.k0 is the wave number
of the most unstable mode, and the coefficientC1 can always
be set to 0 by choosing an appropriate origin. Substitutin
in Eq. ~9!, we find

S250,

sin~F01f11d!5
n2a1~S1

214C2
2!bc/4d

BA11a2~12~S1
21C2

2!/4!
,

S1
254C2

2BA11a2 cos~F01f11d!12c2/d

BA11a2 sin~F01f11d!2bc/d
,

C252
2BA11a2 cos~F01f11d!2c2/4d

BA11a2 sin~F01f11d!12bc/d
, ~16!

-
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which can be solved numerically forS1 , C2, andf1. Near
the stability borderBs

f , an approximate analytic solution ca
be obtained, which is

S1}ABs
f2B,

C2}S1
2 ,

f1.
1

4BA11a2 cos~F01d!
S n2a1

bc

d DS1
2 , ~17!

where the proportionality constants are rather complex
cept for the case off1. The analytic solution agrees we
with the results using numerical integration: as shown in F
2~b!, the modulation amplitudedf vs B curve obtained from
the above expression is in good agreement with the co
sponding numerical values.

The analytic solution confirms not only the square ro
dependence ofA1, but it also provides an explanation for th
asymmetry of the stability border of the stripe solutio
Shown in Fig. 4~a! are two homogeneous solutions—stab
F0

s and unstableF0
u—of the phase equation withB a little

below the stability border. AsB decreases from the homog
neous toward the stripe region, the modulation amplitu
around F0

s increases with decreasingB. For sufficiently
small B, f(x) at certainx approaches the unstable fixe
point F0

u , which then makes the stripe solution unstab
Note thatf1 in Eq. ~17! is nonzero—it is negative whenn is
not very different froma. Thus, the average phase of a stri
state is shifted toward a value smaller thanF0

s . The average
phase of the stripe solution measured using numerical i
gration is also shown, which confirms the shift. As shown
Fig. 3, the shift moves the stripe solution toward~away
from! F0

u for n,a (n.a), resulting in the asymmetry~a
related argument is given in@15#!. The situation is entirely
similar for the forced CGLE. The phase of the stable a
unstable solution is plotted againstn in Fig. 4~b! @23#. Also
plotted is the average phase of the stripe solution. H
again, the average phase is shifted toward~away from! the
unstable solution forn,a (n.a).

IV. CONCLUSION

Despite its simplicity, the forced CGLE displays a lar
variety of phenomena. The homogeneous and stripe s
are mainly discussed here, and the phase equation is fou
be very useful in understanding the stability borders of
forced CGLE. For a sufficiently large forcing amplitude,
homogeneous state with no spatial structure is observed.
state becomes unstable to a spatially periodic stripe state
ce
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a supercritical bifurcation as the forcing amplitude decreas
We obtained an analytic solution for the stripe state of
phase equation, through which an argument for the asym
try of the stability border of the state is formulated. AsB
decreases further, more complex behaviors, such as, the
breeding, ‘‘depinning,’’ and ‘‘roughening,’’ are expected
which are currently under investigation.
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FIG. 4. ~a! The stableF0
s and unstableF0

u homogeneous solu
tions of the phase equation@Eq. ~9!# just below the stability border
(B2Bs

f5531023) are plotted againstn. The average phase of th
stripe solution of the equation for the sameB is also plotted. The
average phase is smaller thanF0

s , which moves away from~to-
ward! F0

s for n.a (n,a). ~b! The same plot for the forced CGLE
The qualitative behavior is identical.
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