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Betweenness centrality correlation in social networks
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Scale-free~SF! networks exhibiting a power-law degree distribution can be grouped into the assortative,
dissortative, and neutral networks according to the behavior of the degree-degree correlation coefficient. Here
we investigate the betweenness centrality~BC! correlation for each type of SF networks. While the BC-BC
correlation coefficients behave similarly to the degree-degree correlation coefficients for the dissortative and
neutral networks, the BC correlation is nontrivial for the assortative ones found mainly in social networks. The
mean BC of neighbors of a vertex with BCgi is almost independent ofgi , implying that each person is
surrounded by almost the same influential environments of people no matter how influential the person may be.
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Recently there have been considerable efforts to un
stand complex systems in terms of random graph, consis
of vertices and edges, where vertices~edges! represent con-
stituents ~their interactions! @1,2#. An interesting feature
emerging in such complex networks is a power-law deg
distribution,pd(k);k2g, where the degreek is the number
of edges incident upon a given vertex@3,4#. Networks dis-
playing the power-law degree distribution are called
scale-free~SF! networks. Baraba´si and Albert ~BA! intro-
duced an evolving model illustrating such a SF network@5#.
The degree distribution of the BA model follows a powe
law pd(k);k23. While the BA-type models are meaningfu
as the first step to generate SF network, they are too sim
to accord with real-world networks, exhibiting nontrivia
degree-degree and other correlations.

The SF networks can be grouped into three types acc
ing to the behavior of the degree-degree correlation coe
cient @6,7#. They are those exhibiting the assortative, diss
tative, and neutral mixing on their degree. For the network
the assortative~dissortative! mixing, called the assortative
~dissortative! network, a vertex with large degree tends
connect to vertices with large~small! degree, while for the
network of the neutral mixing, there is no such tendency. T
assortative network can be found in social networks such
the coauthorship network, the actor network and so on,
the dissortative network in information networks such as
internet and the World Wide Web, and in biological networ
such as protein interaction networks and neural netwo
While such assortative and dissortative networks appea
real world, the neutral network, i.e., the network of the ne
tral mixing on their degree, appears in in silico networ
such as the BA model and the copying model@8# with g
53.

While degree is a fundamental quantity describing the
pology of the SF network, it was shown that the BC is a
other important quantity to characterize how influentia
vertex is in communications between each pair of verti
@9,10#. To be specific, let us suppose communication pa
between a pair of vertices (i , j ) are the shortest pathways an
let the number of such pathways denoted byc( i , j ). Among
them, the number of the shortest pathways running throug
vertex k is denoted byck( i , j ) and the fraction bygk( i , j )
5ck( i , j )/c( i , j ). Then the BC of the vertexk is defined as
1063-651X/2003/67~1!/017101~4!/$20.00 67 0171
r-
ng

e

e

le

d-
fi-
r-
f

e
as
d

e

s.
in
-

-
-

s
s

a

the accumulated amount ofgk( i , j ) over all pairs, i.e.,gk
5($( i . j )%ck( i , j )/c( i , j )5($( i , j )%gk( i , j ). The BC distribution
follows a power law for SF networks,pb(g);g2h, whereg
means BC and the exponenth turns out to be robust as eithe
h'2.2 or h52.0, independent of the degree exponent
long as 2,g<3 @11,12#.

For the BA-type model, it was shown that the BC is r
lated to the degree via the relation@11#

g;k(g21)/(h21). ~1!

Thus the vertices with larger degree are much more influ
tial to others in communications. Due to this relation, o
may think that the BC-BC correlation would behave sim
larly to the degree-degree correlation. In this paper, we re
that while for the dissortative and neutral network, t
BC-BC correlation coefficients behave similarly to th
degree-degree correlation coefficients, for the assortative
work, the degree-BC relation Eq.~1! is nontrivial, leading to
that the BC-BC correlation is very weakly assortative, i.
the mean BC of neighbors of a certain vertex with BCgi is
almost independent ofgi .

The degree-degree correlation@13,14# was investigated in
terms of the correlation function between the remaining
grees of the two vertices on each side of an edge, where
remaining degree means the degree of that vertex minus
@6#. First one defines the joint probabilityed( j ,k) that the
two vertices on each side of a randomly chosen link havj
and k remaining degrees, respectively. Then the normali
correlation coefficient is defined as

r d5
1

sd~q!2 (
j ,k

jk$ed~ j ,k!2qd~ j !qd~k!%, ~2!

whereqd(k) is the normalized distribution of the remainin
degree qd(k)5(k11)pd(k11)/( j jpd( j ), and sd(q)2

5(kk
2qd(k)2@(kkqd(k)#2. Recently Newman called this

quantity the degree assortativity coefficient@7#. For the as-
sortative ~dissortative! networks, r d is positive ~negative!,
and for the neutral networks,r d50. On the other hand, the
degree-degree correlation was also investigated in term
the mean degree of neighbors of a vertex with degreek,
denoted bŷ knn&(k) @15#. For the assortative~dissortative!
©2003 The American Physical Society01-1
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TABLE I. SizeN, mean degreêk&, degree assortativity coefficientr d , BC assortativity coefficientr b for
a number of social networks.

Type Name N ^k& r d r b Reference

Videomovie 29824 33.7 0.22 0.024 @19#

Actor TVminiseries 33980 73.0 0.38 0.033 @19#

TVcablemovies 117655 55.5 0.14 0.035 @19#

TVseries 79663 118.4 0.53 0.013 @19#

Neuroscience 205202 11.8 0.60 0.057 @20#

Coauthor Mathematics 78835 5.50 0.59 0.091 @20#

cond-mat 16264 5.85 0.18 0.086 @21#

arXiv.org 52909 9.27 0.36 0.057 @21#

FIG. 1. Plot of ^knn&(k) (s) and ^gnn&(g)
(d) for ~a! the Internet on the level of autono
mous systems ~dissortative!, ~b! the non-
degenerate configuration model withg53 ~neu-
tral!, and~c! the coauthorship network in the fiel
of neuroscience~assortative!. All data are ob-
tained from a single configuration.

FIG. 2. Plot of the degree-BC relation for~a!
the Internet on the level of autonomous syste
~dissortative!, ~b! the nondegenerate configura
tion model withg53 ~neutral!, and~c! the coau-
thorship network in the field of neuroscience~as-
sortative!.

FIG. 3. Plot of the clustering coefficient as
function of degree (s) and BC (d) for ~a! the
Internet on the level of autonomous systems~dis-
sortative!, ~b! the nondegenerate configuratio
model withg53 ~neutral!, and~c! the coauthor-
ship network in the field of neuroscience~assor-
tative!.
017101-2
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networks,^knn&(k) increases~decreases! with increasingk,
while the neutral networks,̂knn&(k) is independent ofk.

To study the BC-BC correlation, we introduce the BC-B
correlation coefficient, called the BC assortativity coef
cient, in analogy with Eq.~2! as

r b5
1

sb~q!2 (
,,m

,m$eb~,,m!2pb~, !pb~m!%, ~3!

whereeb(,,m) is the joint probability that the BCs of th
two vertices of a link are, andm andsb(q)25(,,2pb(,)
2@(,,pb(,)#2. Moreover, similarly tô knn&, we define the
mean BC of neighbors of a vertex with BCg, denoted by
^gnn&(g), through which we can check if the BC-BC corr
lation is assortative or dissortative.

We first check the BC-BC correlation for the network
the Internet on the level of autonomous systems as of J
ary 2000@16# and the so-called nondegenerate configurat
model withg53 @14,17,18#, which belong to the dissortativ
and the neutral network, respectively. For these networksr b
is 20.16 (,0) and 0.02, respectively, which is close to the
r d values of20.18 and 0.01, respectively. Moreover,^gnn&
3(g) behaves similarly tô knn&(k) as shown in Fig. 1~a!
and 1~b!. However for the assortative networks, the coa
thorship network for example,r b is considerably smalle
thanr d often by one order of magnitude and is close to ze
The comparison ofr b andr d for various social networks ar
tabulated in Table I. The mean BĈgnn&(g) of neighbors of
a vertex with BCg increases with increasingg, however, the
increasing rate is very low compared with that of^knn&(k),
i.e., it depends ong very weakly@Fig. 1~c!#. Such a behavior
appears in other social networks too. Since BC is regarde

FIG. 4. Plot of the relative sizeS of the giant cluster as a func
tion of the fractionf of removed vertices following the order o
degree (s) and BC (d) for the coauthorship network in the fiel
of neuroscience~assortative!.
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a good measure of centrality, it implies that the mean infl
ence of neighbors of a person is almost the same regard
of the influence of the centered person. So a person is
rounded by almost the same influential people on averag
matter how influential the centered person is, although a
son who acquaints many people is likely to connect to peo
who also acquaint many others.

To understand the abnormal behavior of the BC-BC c
relation in detail, we examine the degree-BC relation. In F
2, we compare the degree-BC relationg(k) for the three
types. While the relation of Eq.~1! holds for the dissortative
and the neutral networks, it breaks down for largek for the
assortative networks. Rather the BCs of largek vertices
cover wide range of values. Since the vertices with la
degree are located next to each other in the assortative
work, the shortest pathways between a certain pair of ve
ces do not necessarily pass through such nearby hubs a
same time. Thus the BCs of the vertices with largek fluctuate
and the degree-BC correlation is nontrivial. Next, we co
pare the clustering coefficientC(k) as a function of degreek
with thatC(g) as a function of BCg in Fig. 3. Again for the
assortative and the neutral network, the two functions alm
overlap, however, for the assortative network, the two fu
tions are distinct.

To compare the contributions of degree and BC to
robustness of networks, we also study the relative size of
giant clusterS as a function of the fraction of removed ve
ticesf @22#. We measureS in the two ways of vertex remova
following the order of~i! degree and~ii ! BC for an assorta-
tive network. Figure 4 shows the data for the coauthors
network in the neuroscience field. The relative sizeS by the
vertex removal in BC order decreases faster than in deg
order up tof .0.15, however, forf .0.15, the two data set
almost overlap. That is because the degree-BC relation
Eq. ~1! holds up to roughlyg* .8 and breaks down beyon
g* , which corresponds tok* .15. The fraction of vertices
having degreek.k* is roughly f .0.15. We note that from
the point of view of intentional attack, attack in BC order
more efficient than in degree order.

In conclusion, we have examined the BC-BC correlati
for the three types of scale-free networks, the dissortat
the neutral, and the assortative network. While the BC-
correlation behaves similarly to the degree-degree correla
for the first two types, the BC-BC relation is nontrivial fo
the last type, and the mean BC of neighbors of a vertex w
BC gi increases with increasinggi but very weakly, being
almost independent ofgi . Such a behavior arises from th
fact that the BC of the vertex with large degree is not alwa
high, but takes rather widely ranged values.
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