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Betweenness centrality correlation in social networks
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Scale-free(SPH networks exhibiting a power-law degree distribution can be grouped into the assortative,
dissortative, and neutral networks according to the behavior of the degree-degree correlation coefficient. Here
we investigate the betweenness centralBZ) correlation for each type of SF networks. While the BC-BC
correlation coefficients behave similarly to the degree-degree correlation coefficients for the dissortative and
neutral networks, the BC correlation is nontrivial for the assortative ones found mainly in social networks. The
mean BC of neighbors of a vertex with B§; is almost independent aj;, implying that each person is
surrounded by almost the same influential environments of people no matter how influential the person may be.
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Recently there have been considerable efforts to undethe accumulated amount @ (i,j) over all pairs, i.e. gy
stand complex systems in terms of random graph, consisting = jy;Ci(i,j)/c(i,j) =2 j9k(i,j). The BC distribution
of vertices and edges, where vertideslge$ represent con- follows a power law for SF networkg,(g)~g~ 7, whereg
stituents (their interactions [1,2]. An interesting feature means BC and the exponenturns out to be robust as either
emerging in such complex networks is a power-law degreey~2.2 or n=2.0, independent of the degree exponent as
distribution, p4(k) ~k™~?, where the degrek is the number long as 2 y<3[11,17.
of edges incident upon a given vertE%4]. Networks dis- For the BA-type model, it was shown that the BC is re-
playing the power-law degree distribution are called thelated to the degree via the relatiphl]
scale-free(SP networks. Barabsi and Albert(BA) intro-
duced an evolving model illustrating such a SF netwdark g~k =D, 1)
The degree distribution of the BA model follows a power-
law py(k)~k~3. While the BA-type models are meaningful
as the first step to generate SF network, they are too simp

to accord with real-world networks, exhibiting nontrivial X X
larly to the degree-degree correlation. In this paper, we report

degree-degree and other correlations. . - .
The SF networks can be grouped into three types accor hat while for the dissortative and neutral network, the

ing to the behavior of the degree-degree correlation coeffi- C-BC carrelation coefficients behave similarly to the

: o : ; degree-degree correlation coefficients, for the assortative net-
cient[6,7]. They are those exhibiting the assortative, dissor- . S .
[6,7] y g ork, the degree-BC relation Efl) is nontrivial, leading to

tative, and neutral mixing on their degree. For the network of" S L2
the assortative(dissortat?ve mixing, galled the assortative that the BC-BC cor_relatlon IS very weakly asso.rtatlve, I.€.,
(dissortativeé network, a vertex with large degree tends tothe mean BC of neighbors of a certain vertex with §ds
connect to vertices with largesmal) degree, while for the &most independent ;. _ ) . .
network of the neutral mixing, there is no such tendency. The The degree-degre_e correla_t|[ﬂ8,14] was mvestlga_te_d n
assortative network can be found in social networks such a&€'m$ of the correlat|_on function beMeen the remaining de-
the coauthorship network, the actor network and so on, and'®es c_)f the two vertices on each side of an edge, where the
the dissortative network in information networks such as thd€Maning degree_ means the_ degree Of_ _that_vertex minus one
internet and the World Wide Web, and in biological networks|6)- First one defines the joint probabilit(j,k) that the

such as protein interaction networks and neural networkdWO Vertices on each side of a randomly chosen link have

While such assortative and dissortative networks appear iA"dK remaining degrees, respectively. Then the normalized

real world, the neutral network, i.e., the network of the neu_correlatlon coefficient is defined as
tral mixing on their degree, appears in in silico networks L
s:ugh as the BA model and the copying mofi&] with y rd:gd(q)Z % ik{eq(i k) — aa())aa(k)}, )
While degree is a fundamental quantity describing the to-
pology of the SF network, it was shown that the BC is an-whereqq(k) is the normalized distribution of the remaining
other important quantity to characterize how influential adegree qq(k)=(k+1)py(k+1)/Z;jpg(j), and aq(q)?
vertex is in communications between each pair of vertices==,k?qq(k) —[=kqq(k)]%. Recently Newman called this
[9,10]. To be specific, let us suppose communication pathsjuantity the degree assortativity coefficig¢i@. For the as-
between a pair of vertices,() are the shortest pathways and sortative (dissortativé networks,ry is positive (negative,
let the number of such pathways denoteddfy,j). Among  and for the neutral networksy=0. On the other hand, the
them, the number of the shortest pathways running through degree-degree correlation was also investigated in terms of
vertex k is denoted byc,(i,j) and the fraction byg,(i,j) the mean degree of neighbors of a vertex with dedcee
=c,(i,j)/c(i,j). Then the BC of the vertek is defined as denoted by(k,,(k) [15]. For the assortativédissortative

Thus the vertices with larger degree are much more influen-
Féal to others in communications. Due to this relation, one
may think that the BC-BC correlation would behave simi-
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FIG. 2. Plot of the degree-BC relation féa)
the Internet on the level of autonomous systems
(dissortativg, (b) the nondegenerate configura-
tion model withy=3 (neutra), and(c) the coau-
thorship network in the field of neuroscien(@es-
sortative.

FIG. 3. Plot of the clustering coefficient as a
function of degree ©) and BC @) for (a) the
Internet on the level of autonomous syste(is-
sortativg, (b) the nondegenerate configuration
model with y=3 (neutra), and(c) the coauthor-
ship network in the field of neuroscien¢assor-
tative).

Ch), C(g)

TABLE I. SizeN, mean degreék), degree assortativity coefficieng, BC assortativity coefficient,, for
a number of social networks.

Type Name N (k) Iy I Reference
Videomovie 29824 33.7 0.22 0.024 [19]
Actor TVminiseries 33980 73.0 0.38 0.033 [19]
TVcablemovies 117655 555 0.14 0.035 [19]
TVseries 79663 118.4 0.53 0.013 [19]
Neuroscience 205202 11.8 0.60 0.057 [20]
Coauthor Mathematics 78835 5.50 0.59 0.091 [20]
cond-mat 16264 5.85 0.18 0.086 [21]
arXiv.org 52909 9.27 0.36 0.057 [21]
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1

order by degree o a good measure of centrality, it implies that the mean influ-

09 T orderby BC o ] ence of neighbors of a person is almost the same regardless
08 of the influence of the centered person. So a person is sur-
07 | rounded by almost the same influential people on average no
06 matter how influential the centered person is, although a per-

“ 05 | 3 | son who acquaints many people is likely to connect to people
04 | % ] who also acquaint many others.

) To understand the abnormal behavior of the BC-BC cor-
03T SS5- | relation in detail, we examine the degree-BC relation. In Fig.
027 %, 1 2, we compare the degree-BC relatigik) for the three
01 ¢ o™ l types. While the relation of Eq1) holds for the dissortative

0 ' : : R —— and the neutral networks, it breaks down for lakgir the

0 005 01 0I5 02 025 03 03 assortative networks. Rather the BCs of lalgevertices
f cover wide range of values. Since the vertices with large

degree are located next to each other in the assortative net-
work, the shortest pathways between a certain pair of verti-
ces do not necessarily pass through such nearby hubs at the
same time. Thus the BCs of the vertices with lakdkictuate
and the degree-BC correlation is nontrivial. Next, we com-
pare the clustering coefficie@(k) as a function of degrele
with thatC(g) as a function of B@j in Fig. 3. Again for the
assortative and the neutral network, the two functions almost
overlap, however, for the assortative network, the two func-
tions are distinct.

To compare the contributions of degree and BC to the

FIG. 4. Plot of the relative siz8 of the giant cluster as a func-
tion of the fractionf of removed vertices following the order of
degree O) and BC @) for the coauthorship network in the field
of neurosciencéassortative

networks,(k,) (k) increaseqdecreaseswith increasingk,
while the neutral networkgk,,) (k) is independent ok.

To study the BC-BC correlation, we introduce the BC-BC
correlation coefficient, called the BC assortativity coeffi-
cient, in analogy with Eq(2) as

1 robustness of networks, we also study the relative size of the
ry= > > emie,(€,m)—py(£)py(m)}, (3)  giant clusterSas a function of the fraction of removed ver-
op(q)” tm ticesf [22]. We measur&in the two ways of vertex removal

following the order of(i) degree andii) BC for an assorta-
tive network. Figure 4 shows the data for the coauthorship
network in the neuroscience field. The relative s¥gy the
vertex removal in BC order decreases faster than in degree
; ) order up tof=0.15, however, fof >0.15, the two data sets
(9nw(9), through which we can check if the BC-BC corre- gimost overlap. That is because the degree-BC relation of

lation is assortative or dissortative. Eq. (1) holds up to roughlyg* =8 and breaks down beyond
We first check the BC-BC correlation for the network of .« hich corresponds t&* =15. The fraction of vertices

the Internet on the level of autonomous systems as of Jan faving degred>k* is roughly f=0.15. We note that from
ary 2000[16] and the so-called nondegenerate configuration,o it of view of intentional attack, attack in BC order is
model withy=3[14,17,18, which belong to the dissortative .o afficient than in degree order.

and the neutral network, respectively. For these netwagks, In conclusion, we have examined the BC-BC correlation

is —0.16 (<0) and 0.02, respectively, which is close to their ¢ e three types of scale-free networks, the dissortative,
rq values of—0.18 and 0.01, respectively. MOreovegny  the neutral, and the assortative network. While the BC-BC
X(g) behaves similarly tdk,y(k) as shown in Fig. @  correlation behaves similarly to the degree-degree correlation
and 1b). However for the assortative networks, the coau-or the first two types, the BC-BC relation is nontrivial for
thorship network for examples, is considerably smaller ihe |ast type, and the mean BC of neighbors of a vertex with
thanr often by one order of magnitude and is close to zerogc g increases with increasing, but very weakly, being
The comp_arison of, andr 4 for various social ngtworks are aimost independent aj;. Such a behavior arises from the
tabulated in Table I. The mean B@n,)(g) of neighbors of  t5¢t that the BC of the vertex with large degree is not always

a vertex with BCg increases with increasirg however, the high, but takes rather widely ranged values.
increasing rate is very low compared with that(&f,,) (k),

i.e., it depends og very weakly[Fig. 1(c)]. Such a behavior The work is supported by the ABRL program of the
appears in other social networks too. Since BC is regarded d§OSEF.

where e, (€, m) is the joint probability that the BCs of the
two vertices of a link ar¢ andm and o,(q)2== ,£2py(£)
—[2¢€py(€)]%. Moreover, similarly to{k,), we define the
mean BC of neighbors of a vertex with Bg; denoted by
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