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Abstract. We investigate a problem of data packet transport between a pair of vertices on scale-free
networks without loops or with a small number of loops. By introducing load of a vertex as accumulated
sum of a fraction of data packets traveling along the shortest pathways between every pair of vertices, it
is found that the load distribution follows a power law with an exponent δ. It is found for the Barabási-
Albert-type model that the exponent δ changes abruptly from δ = 2.0 for tree structure to δ � 2.2 as
the number of loops increases. The load exponent seems to be insensitive to different values of the degree
exponent γ as long as 2 < γ < 3.

PACS. 89.75.Fb Structures and organization in complex systems – 05.65.+b Self-organized systems –
02.10.Ox Combinatorics; graph theory

1 Introduction

Considerable efforts have been made to understand com-
plex systems in terms of graphs consisting of vertices and
edges which represent the constituents and their inter-
actions, respectively [1–4]. In real systems they can be
routers and optical wires in communication systems, in-
dividuals or actors and acquaintances in social networks,
substrates and chemical reactions or enzymes catalyzing
them in metabolic pathways, etc. One of the central mea-
sures characterizing a given graph is the degree, defined
as the number of edges connecting to a certain vertex.
Since its introduction about half a century ago the random
graph theory [5] has successfully explained the small-world
character of real-world networks. The degree distribution
of the ER network, however, follows a Poissonian, while
a majority of real world networks show the power-law be-
havior,

PD(k) ∼ k−γ , (1)

where k is degree and γ is the degree exponent. Such
networks, called scale-free (SF), are ubiquitous in na-
ture, examples of which include the world-wide web
(WWW) [6–8], the Internet [9–11], the citation net-
work [12], the collaboration network of scientific pa-
pers [13,14], and the metabolic networks in microbial or-
ganisms [15]. It was not until the advent of the so-called
preferential attachment (PA) scheme that we understand
the absence of typical scale in degree distribution thereof.
To illustrate the mechanism of SF network formation,
Barabási and Albert (BA) [16–18] introduced an evolving
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network model where the number of vertices N increases
linearly with time rather than fixed, and a newly intro-
duced vertex is connected to m already existing vertices
with probability proportional linearly to the degree of the
selected vertex, which lends the name PA. Then the de-
gree distribution follows a power law with the exponent
γ = 3.

Recently, another type of SF network model, called the
static model, was introduced [19,20] in which the number
of vertices N is fixed from the beginning, and vertices are
indexed by an integer i (i = 1, · · · , N) and assigned the
weight or fitness pi = i−α each, where α is a control pa-
rameter in [0, 1). We select two different vertices (i, j) with
probabilities equal to the normalized weights, pi/

∑
k pk

and pj/
∑

k pk, respectively, and add an edge between
them unless one exists already. This process is repeated
until mN edges are made in the system leading to the
mean degree 〈k〉 = 2m. Since edges are connected to a
vertex with frequency proportional to the weight of that
vertex, the degree at that vertex is given by

ki � 2mN
(1 − α)
N1−α

1
iα

∼
(

N

i

)α

. (2)

Then it follows that the degree distribution displays the
power law, equation (1), where the degree exponent γ is
given by

γ = 1 + 1/α. (3)

Thus, adjusting the parameter α in [0, 1), we can obtain
various values of the exponent γ in the range, 2 < γ < ∞.

While the degree of a vertex represents one aspect of
the centrality of the vertex, other measures should be used
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to quantify importance of a vertex in transport proper-
ties of the SF networks. In Section 2, we introduce a
quantity, called load, which has been used in the study
of data packet transport on networks. Interestingly, the
load distribution displays a power law and the load expo-
nent seems to be insensitive to the details of SF network
structures. The load exponent, however, exhibits a distinct
feature depending on the presence and absence of loop
structures in scale-free networks. For all diverse spectra
of degree distribution with different γ’s, many real-world
networks as well as stochastic and deterministic models
mimicking them seem to fit a classification scheme [21] in
terms of characteristic load exponent δ. Specific features
of geodesics, mass-distance relation and resilience under
attack can be attributed to the class identification [21]. In
this vein, we introduce in Section 3, a modified BA model
which interpolates the tree structure and the structure
with a small number of loops and study how δ changes
between the two structures.

2 Load or betweenness centrality

Let us suppose that a data packet is sent from a ver-
tex to another on a scale free network. It is transmitted
along the shortest pathway between them. If there exist
more than one shortest pathways, the data packet would
encounter one or more branching points, where the data
packet is presumed to take one of them with equal prob-
ability, and is substantially divided evenly by the number
of branches at each branching point as it travels. Then
the load �i at a vertex i is defined as the total amount
of data packets passing through that vertex (i) when all
pairs of vertices send and receive one unit of data packet
between them. Note that the contribution from the path-
way with the source/target pair (s, t), denoted by �

(s→t)
i ,

may be different from that of (t, s) even for undirected
networks. Hence we define the load �i of a vertex i as the
sum over all pairs of vertices, �i ≡ ∑

s,t �
(s→t)
i . The defi-

nition of the load is illustrated in Figure 1a. Here, we do
not take into account the time delay of data transfer at
each vertex or edge, so that all data are delivered in a unit
time, regardless of the distance between any two vertices.
In fact, if we assume data travel with constant speed so
that the time delay of data transfer is proportional to the
distance between two vertices, the time delay effect does
not change the load distribution. The reason for this re-
sult is that when the time delay is accounted, load at each
vertex is reduced roughly by a factor log N or log log N ,
in turn, proportional to the diameter, which is negligible
compared with the load without the time delay [19]. Be-
cause of this small-world property, the universal behavior
remains unchanged under the time delay of data transmis-
sion. On the other hand, since the packets are conserved,
the total load contributed by a pair is simply related to
the shortest pathway length dst between them, leading to∑

i �
(s→t)
i = dst + 1. Thus we have the sum rule for �i:∑
i

�i =
∑
s,t

(dst + 1) = N(N − 1)(d + 1) ∼ N2d. (4)
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Fig. 1. (a) The load at each vertex due to a unit packet transfer

from the vertex s to the vertex t, �
(s→t)
i . In this diagram, only

the vertices along the shortest paths between (s, t) are shown.
The quantity in parentheses is the corresponding value of the

load due to the packet from t to s, �
(t→s)
i . (b) The BC at each

vertex due to a packet transfer between the vertices s and t,

b
(s→t)
i .

The dynamic quantity, load, is closely related to its static
counterpart used in sociology called “betweenness central-
ity” (BC) to quantify how much power is centralized to
people in social networks [22,23], defined as follows. Let
us consider a communication between two persons rep-
resented by a pair of vertices (s, t). The communication
is supposed to travel along the shortest pathway between
the two. When there are more than one geodesics between
them, each one of them is taken with equal probability.
The BC for a certain vertex is defined as the accumulated
fraction of total number of the shortest pathways pass-
ing on that vertex over all pairs. That is, the betweenness
centrality at a vertex i is

bi =
∑
s�=t

b
(s→t)
i =

∑
s�=t

Gi(s, t)
G(s, t)

, (5)

where G(s, t) is the total number of geodesics connect-
ing the vertices s and t, and Gi(s, t) the number of those
passing through the vertex i among them. The definition
of BC is also illustrated in Figure 1b. Slightly different
in the definitions, the two quantities, load or BC, behave
closely and their distributions are indistinguishable within
our numerical resolution. Hence we shall not distinguish
them throughout this paper, unless otherwise noted ex-
plicitly.

2.1 The load distribution

Once a SF network is generated artificially or adopted
from the real world, we select an ordered pair of
vertices (i, j) on the network, and identify the shortest
pathway(s) between them and measure the load on each
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vertex along the shortest pathway using the modified ver-
sion of the breath-first search algorithm introduced by
Newman [23] and independently by Brandes [24]. We have
measured load �i of each vertex i for SF networks with var-
ious γ. It is found numerically that the load distribution
PL(�) follows the formula,

PL(�) ∼ �−δ. (6)

When the index of the vertices are ordered according to
the rank of the load, we have �1 ≥ · · · ≥ �N . Then, the
power-law behavior of the load distribution implies that

�i∑
j �j

∼ 1
N1−β

1
iβ

. (7)

with δ = 1 + 1/β. The relation, equation (7), is valid in
the region, �min < � < �max, where

�min ∼ �max/N
β ∼




Nd for β < 1
Nd/ lnN for β = 1
N2−βd for β > 1.

(8)

Note that equations (1) and (6) combined may give a scal-
ing relation between load and degree of a certain vertex as

� ∼ k(γ−1)/(δ−1), (9)

which holds when degree and load are correlated in the
way that the vertex with higher degree has larger value of
load. On the other hand, to assess the degree-degree cor-
relation of a network, the Pearson correlation coefficient r
between the degrees of the two end vertices of an edge
averaged over all edges has been introduced [25]. In terms
of the value r, networks are categorized as assortative
(r > 0), neutral (r = 0), and dissortative (r < 0). equa-
tion (9) holds for the neutrally and dissortatively mixed
networks but breaks down for the assortatively mixed
ones [26]. However, where analytic results are available,
the trees satisfy the relation,

� ∼ kγ−1, (10)

since δ = 2 for all γ.

2.2 Classification of scale-free networks

Based on numerical measurements of load exponents for
a variety of SF networks, it is likely that load exponent is
apparently robust, insensitive to the details of network
structure such as the degree exponent γ in the range,
2 < γ ≤ 3, and mean degree, directionality of edge, etc.
Empirical measurements also allude us to the classifica-
tion of SF networks into two classes, say, Class I and II,
which are shown in Figure 3. For Class I, the load ex-
ponent is δ � 2.2(1) 1 and for Class II, it is δ � 2.0(1).

1 Although δ for real networks in Class I is measured to be
∼ 2.2(1), detailed measurements on the static model show con-
siderable variation of δ on γ between 2.0 and 2.2 as noted by
Barthélemy [27].

Fig. 2. Plot of the load distribution PL(�) versus � for various
γ = 2.25 (	), 2.5 (�), 2.75 (◦) and 3.0 (�) in double loga-
rithmic scales. The data are obtained from the static model.
The linear fit (solid line) has a slope −2.2. Simulations are
performed for N = 10000 and m = 2 and all data points are
averaged over 10 configurations. Lower Inset: Same plot for
γ = 4 (+), 5 (×), and ∞ (∗). The line having a slope −2.2 is
drawn to compare the data with the case for 2 < γ ≤ 3. Upper
Inset: Plot of PL(�) versus � for different m = 2, 4 and 6, but
for the same γ = 2.5.

We conjecture the load exponent for Class II to be ex-
actly δ = 2 since it can be derived analytically for simple
models: (i) Szabó and Kertész [28] derived δ = 2.0 for
BA tree by using mean field approach. (ii) Noh [29] did
the same for the hierarchical model proposed by Ravasz
and Barabási [30], where the load exponent invariably is
δ = 2.0 as the degree exponent is varied as a function
of the increasing rate of the number of edges at a hub
in each hierarchical level. (iii) Goh et al. [21] also did for
the generalized BA tree structure including the PA pro-
portional to k + a, but they obtained the edge-load expo-
nent to be δ = 2.0, independent of the degree exponent γ.
Moreover, we derive the load exponent explicitly for the
deterministic tree structure proposed by Jung et al. [31] in
Appendix. In the deterministic tree model of SF network,
the load exponent δ = 2.0 is kept intact while the degree
exponent can be controlled by adjusting a parameter µ for
2 < γ < 3. The real-world as well as the model networks
that are found to belong to each class are listed in Table 1.
On the other hand, for γ > 3, δ depends on γ in a way
that it increases as γ increases. Eventually, the load dis-
tribution decays exponentially for γ = ∞ as shown in the
lower inset of Figure 2. Thus, the transport properties of
the SF networks with γ > 3 are fundamentally different
from those with 2 < γ ≤ 3.

The different behaviors of the load distribution in the
Class I and II may originate from different generic topo-
logical features of networks. For the BA model, when
m > 2, the network contains loop structure, so that
δ � 2.2 while, for m = 1, the network is of tree leading to
δ = 2.0. Since the two values are too close, we plot the load
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Table 1. Networks investigated and classified.

Class System Node Link Ref.
I Coauthorship networks of neuroscience 1991–1998 Scientists Coauthorship [14]

Metabolic networks of 5 species of eukaryotes and 32 of bacteria Metabolites Chemical reaction [15]
BA model with m ≥ 2 [16–18]
Protein interaction network of the yeast S. cerevisiae Proteins Physical binding [32,33]
Geometrical growth model by Huberman & Adamic [34]
Copying model by Kumar et al. [35]
Accelerated growth model by Dorogovtsev and Mendes. [36]
Fitness model by Bianconi and Barabási [37]
Protein interaction network model by Solé et al. [38]

II WWW within www.nd.edu domain Webpages Hyperlinks [6]
Metabolic networks of 6 species of Archaea Metabolites Chemical reaction [15]
BA model with m = 1 [16–18]
Hierarchical model by Ravasz and Barabási [30]
Deterministic tree model by Jung et al. [31]
Internet at the autonomous systems (AS level) ASes Hardwire connection [39]

Fig. 3. The load distribution for (a) the coauthorship network
(CO), the protein interaction network by Ito et al. (PIN2),
and the metabolic network of an eukaryotic organism Emeri-
cella nidulans; (b) the Internet at the autonomous system level
(AS) and the WWW within nd.edu domain (WWW). The
solid lines, drawn for guide to the eyes, have slopes −2.2 (a)
and −2.0 (b), respectively.

distributions for the BA model with m = 1, 2 and 3 in
Figure 4, obtained from large system size, N = 3 × 105.
We can see clearly different behaviors between the two
load distributions for the cases of m = 1 (Class II) and
of m = 2 and 3 (Class I). One may wonder why the hi-
erarchical model by Ravasz and Barabási belongs to the
Class II, even though it contains loop structures. Here we
emphasize that the load exponent is determined by generic
topological features of the shortest pathways of networks.
In Class I, the presence of the long-range loops in multiple
shortest pathways between a given pair of vertices leads
to the load-sharing between the hubs and a compact lo-
calized blob of the hubs is formed. On the other hand, in
Class II, such a blob is absent, and the shortest pathways
are tree-like. For the Internet at the autonomous system
level, and the metabolic networks of Archaea, even though
the shortest pathways are composed of loops, they form
in a trivial manner, and the blob structure of the shortest
pathways is absent, leading to the result that the number

Fig. 4. The load distribution for the BA model (γ = 3) with
m = 1, 2, and 3, and N = 3 × 105. The dotted (dashed) line
has a slope −2.0 (−2.2).

of vertices residing on the shortest pathways with a given
length depends on that length linearly, like the case of tree
structure. Thus, δ ≈ 2.0 [21]. To illustrate the reliance of
the load exponent on topological feature, in the next sec-
tion, we investigate the crossover behavior between the
two behaviors of the load distribution as the fraction of
loops in the BA networks changes.

3 Crossover in load distributions between tree
and loop scale-free networks

We investigate how the value of the exponent δ = 2.0
changes as the number of loops increases. To this end, we
modify the BA model in such a way that a new vertex
attaches one or two edges to existing network with prob-
ability 1 − p or p, respectively. Then the mean number of
edges emanating from a new vertex is given by 〈m〉 = 1+p.
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Fig. 5. The load exponent as a function of the mean number
of edges 〈m〉 emanating from a new vertex for various degree
exponents γ in the BA model and different system sizes, N =
104 (©) and N = 105 (�).

A target vertex j is selected according to the preferential
attachment scheme, that is, chosen with the probability
linearly proportional to kj + mj(a − 1), where kj is the
degree of the vertex j at the time when the connection
is attempted and mj is the one or two assigned upon its
birth, and a is a control parameter. The degree exponent
of the BA model network generated in this way is γ = 2+a
and its mean degree is 2(1 + p). For fixed γ (or a), we ad-
just the fraction of edges forming loops by controlling p.
Once a SF network is generated in this manner, we mea-
sure load exponent δ for 2 < γ < 3 and 〈m〉 by applying
the algorithm proposed by Newman and Brandes [23,24].

When p = 0, the network is a tree, and the load ex-
ponent is confirmed to be δ = 2.0. In addition, we find
that the load exponent increases to δ � 2.2 by increasing
〈m〉 to 〈m〉 � 1.1 at which the edges connecting different
branches of the tree structure form sparse loops in a non-
trivial manner. As shown in Figure 5, the value δ � 2.2
at 〈m〉 � 1.1 turns out to be robust, largely independent
of the degree exponent γ for 2 < γ < 3. Such a behav-
ior persists as long as 〈m〉 is smaller than a γ-dependent
characteristic value, 〈mc〉, beyond which δ depends on γ.
Moreover, we find that the plateau region of δ � 2.2 is ex-
tended as the system size N increases as shown in Figure 5.
Note that the degree distribution of the BA model con-

γ = 2.7 ;  = 1.1m

Fig. 6. (Color online). Snapshot of a network with γ = 2.7
and m = 1.1. Thick red lines represent edges without which
the structure is tree.

tains hump in the tail region generically, which becomes
broader as γ → 2. Due to this property, the power-law re-
gion in the load distribution becomes narrower as γ → 2,
resulting in larger error bars for δ as γ approaches 2.0.
The saturated value decreases with decreasing γ. There-
fore, for fixed 〈m〉 = 2, δ is likely to decrease from � 2.2
for γ = 3 to δ � 2.0 as γ decreases. The decreasing rate
seems to be larger as γ approaches 2. Based on the result
for 〈m〉 ≥ 2, Barthélemy argued [27,40] that the univer-
sal behavior of the load exponent in γ breaks down. The
robustness of the load exponent, however, appears appar-
ently when 〈m〉 < 〈mc〉(γ), where the graph is sparse.
Moreover, we study the size-dependent behavior of the
load exponent by comparing the behavior of δ for differ-
ent sizes, N = 104 and N = 105. We find that the over-
all behavior of the load exponent is likely to remain the
same but the characteristic value 〈mc〉(γ) becomes larger
for larger size N , implying that the plateau region of the
load exponent being δ � 2.2 is extended as N increases.
Note that the abrupt transition of the load exponent from
δ = 2.0 to � 2.2 by a small amount increment of 〈m〉
is reminiscent of the crossover behavior from the Heisen-
berg model class to the Ising model class by imposing a
small mount of anisotropy on the coupling constant in one
direction [41].

We investigate the qualitative mechanism of the
crossover from the Class I to II and vice versa around
〈m〉 � 1.1. When 〈m〉 = 1, the number of branches at
the hub, located at the center in Figure 6, is N1/(γ−1)

on average. As 〈m〉 increases, the edges connecting differ-
ent branches form as denoted by thick (red: color online)
lines in Figure 6, playing a role of “weak ties”. Such edges
provide alternative shortest pathways between a pair of
vertices belonging to different branches that are otherwise
connected only by detouring through the hub. Due to the
presence of such edges, the average distance between two
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vertices can be shorter and vertices become multiply con-
nected in their shortest pathways. As a result, the load of
the hub is reduced, while those of the vertices attaching
to the weak ties become larger, leading to the increase of
the load exponent δ. It is not manifest yet, however, why
the numerical value of the load exponent remains robust
as δ � 2.2 for 1.1 < 〈m〉 < 〈mc〉 regardless of the degree
exponent γ as long as 2 < γ < 3. To clear it, analytic
solution is needed.

4 Conclusions and discussion

We have introduced a quantity called load to study the
transport phenomena of data packets on SF network, find-
ing that the load distribution follows a power law with
exponent δ. Interestingly, the measured values of the load
exponent δ for real world networks and correlated artifi-
cial networks seem to fall into two classes with δ ≈ 2.2(1)
and 2.0, although δ changes continuously in some uncorre-
lated models such as the static model. The classification is
mainly rooted in generic topological features of the short-
est pathways between a pair of vertices. For the former,
most shortest pathways are made of multiple pathways
and have a blob structure, while for the latter, it is effec-
tively tree. In addition, we have studied the crossover be-
havior between the two classes by controlling the number
of edges emanating from a newly born vertex in the BA
model, from which is drawn that the topological changes
induced by the nucleation of loops yield a robust and
generic crossover. The contents of this review article is
mainly based on our works published in [19,21,26,40,42].

This work is supported by the KOSEF Grant No. R14-2002-
059-01000-0 in the ABRL program. BK would like to thank
the organizing committee for inviting him to the conference.

Appendix: Derivation of δ = 2.0
for the deterministic tree

Let us introduce a modified version of the geometric
fractal growth model for SF networks proposed by Jung
et al. [31]. In this model, we start with v0 = 2 vertices,
each having degree 1 at t = 0 (see Fig. 7). At each time
step, a new generation of vertices are added in such a way
that the degree of each node is multiplied by a multiplica-
tion factor µ; that is, the degree of the vertex i is evolving
via k

(i)
t = µk

(i)
t−1, where k

(i)
t is the degree of the vertex i

at time t. Then the number of vertices newly born at time
t ≥ 1 is expressed as

vt = (µ − 1)
(
vt−1 + µvt−2 + · · · + µt−1v0

)
, (A.1)

or by subtracting µvt−1 from this, as vt = (2µ − 1)vt−1.
The number of newborn vertices and the total number of
vertices at time t are,

vt = 2(µ − 1)(2µ − 1)t−1; v0 = 2, (A.2a)
Nt = (2µ − 1)t + 1 , (A.2b)

Fig. 7. (Color online) Early stage (t = 3) of network growth
in the deterministic tree with µ = 3. Initially there are two
vertices connected by an edge.

respectively. This, in turn, implies that the total number of
vertices with degree k = µτ or those of (t−τ)th generation
can be written as

Vt(τ) =

{
2(µ − 1)(2µ − 1)t−τ−1 for τ ≤ t − 1
2 for τ = t.

(A.3)

Thus, the degree exponent can be written as γ = 1 +
ln(2µ − 1)/ lnµ and the mean degree of the tree is

〈k〉 =
1
Nt

t∑
τ=0

µτVt(τ) = 2 + O
(

µ

2µ − 1

)t

. (A.4)

Similarly, the total number of offsprings of a vertex with
degree µτ , Ωt(τ), is related to that of its descendants via

Ωt(τ) =
τ∑

j=1

µj−1(µ − 1)
{
Ωt(τ − j) + 1

}
(A.5)

to yield

Ωt(τ) =
(2µ − 1)τ − 1

2
. (A.6)

In the tree, the shortest pathway being unique, the load of
a vertex is simply given by the number of distinct routes
passing through the vertex on their way to each other.
Since the number of vertices with degree µj that are direct
daughters of a vertex with degree µτ is µτ−j−1(µ−1), the
load of a τ -generation-old vertex denoted as �t(τ) becomes

� = �t(τ) =
{
Nt −

[
Ωt(τ) + 1

]}
Ωt(τ)

+
(

Ωt(τ)
2

)
−

τ−1∑
j=1

µτ−j−1(µ − 1)
(

Ωt(j) + 1
2

)
. (A.7)

In the grown stage of the network(t � 1), from one-to-one
correspondence between � and τ , the load distribution is
given by the relation,

PL(�) =
Vt(τ)
Nt

�




2(µ − 1)
(2µ − 1)τ+1

for τ ≤ t − 1

2
(2µ − 1)τ + 1

for τ = t .

(A.8)
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and � = �t(τ) � (1/2)(2µ − 1)t+τ . Since the deterministic
tree can only have discrete values of �, it is more natural to
consider the accumulated distribution P acc

L (�) = Prob(� ≥
�t(τ));

P acc
L (�)) = Prob(� ≥ �t(τ)) =

t∑
k=τ

PL(�t(k))

� 2(µ − 1)
(2µ − 1)τ+1

1 − (2µ − 1)−t+τ

1 − (2µ − 1)−1
+ 2(2µ − 1)−t

= (2µ − 1)−t + (2µ − 1)−τ ∼ �t(τ)−1 , (A.9)

implying

PL(�) = − d
d�

P acc
L (�) ∼ �−2 . (A.10)

Thus the load exponent δ = 2.0, independent of µ and γ.
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