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Abstract. The static model was introduced to generate a scale-free network. In the model, N number
of vertices are present from the beginning. Each vertex has its own weight, representing how much the
vertex is influential in a system. The static model, however, is not relevant, when a complex network is
composed of many modules such as communities in social networks. An individual may belong to more
than one community and has distinct weights for each community. Thus, we generalize the static model by
assigning a q-component weight on each vertex. We first choose a component (µ) among the q components
at random and a pair of vertices is linked with a color µ according to their weights of the component (µ)
as in the static model. A (1−f) fraction of the entire edges is connected following this way. The remaining
fraction f is added with (q+1)-th color as in the static model but using the maximum weights among the q
components each individual has. The social activity with such maximum weights is an essential ingredient
to enhance the assortativity coefficient as large as the ones of real social networks.

PACS. 89.65.-s Social and economic systems – 89.75.Hc Networks and genealogical trees – 89.75.Da
Systems obeying scaling laws

1 Introduction

Recently there have been considerable efforts to under-
stand complex systems in terms of random graph, consist-
ing of vertices and edges, where vertices (edges) represent
individuals (acquaintances or their interactions) [1–4]. In
such complex networks, the emergence of a power-law de-
gree distribution, P (k) ∼ k−γ , is an interesting feature.
Such networks are called scale-free (SF) networks. To il-
lustrate such SF behavior, many in silico models have been
introduced, whose examples include the Barabási and
Albert model [5], the Huberman and Adamic model [6],
etc. In those models, the number of vertices grows with
time.

The static model [7] is another type of in silico model
designed to generate SF networks, where the number of
vertices is fixed. Each vertex is indexed by an integer i
(i = 1, · · · , N) and assigned its own weight wi = i−α,
where α is a tunable parameter. Next, two different ver-
tices (i, j) are selected with probabilities equal to nor-
malized weights, wi/

∑
k wk and wj/

∑
k wk, respectively,

and are connected via an edge unless one exists already.
This process is repeated until mN edges are present in
the system, so that the mean degree is 2m. Then it fol-
lows that the degree distribution is SF with the exponent
γ = 1 + 1/α. Thus, tuning the parameter α in [0.5, 1), we
can obtain a continuous spectrum of the exponent γ in
the range 2 < γ ≤ 3, for which the degree distribution has
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finite mean and diverging variance. Since the number of
vertices does not grow, one may wonder if this model can
be applied to evolving real world network. However, since
the model network can be easily generated and exhibits
little hump in the degree distribution, it is useful to study
many aspects of SF networks.

In this paper, we generalize the static model by al-
lowing a q-component weight (w(1)

i , w
(2)
i , . . . , w

(q)
i ) to each

vertex i. We suppose that the µ-th component w
(µ)
i of a

vertex i represents its own weight or fitness to a subgroup
(µ) (µ = 1, . . . , q) in a society. For example, we suppose
that two persons i and j are alumni of a high school, a
subgroup (µ). They would have different weights w

(µ)
i and

w
(µ)
j in the subgroup (µ), determined by their school ac-

tivities. The person i and another person k are colleagues
in a company, another subgroup (ν). They have also differ-
ent weights, w

(ν)
i and w

(ν)
k , by their positions in the com-

pany, the subgroup (ν). Then the person i has weights
w

(µ)
i and w

(ν)
i in different subgroups, which are not the

same in general. We make an edge between the pair (i,j)
in one color representing the subgroup (µ) and the pair
(i,k) in another color for the subgroup (ν). Vertices in
the system are connected with edges in q different colors
representing different subgroups. Subgroups are then con-
nected each other by weak ties as explained later. Since our
society comprises many different subgroups and a person
can be acquainted with other people belonging to diverse
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subgroups, this generalized static model is useful for mod-
eling social networks.

So far, there have been many attempts to explain the
structures and the properties of social networks [8]. Re-
cently, Watts et al. [9] introduced a hierarchical model for
social network. In the model, individuals belong to groups
that in turn belong to groups of groups and so on, creat-
ing a tree-like hierarchical structure of social organization.
Here an individual can belong to more than one group,
as a result of which the distance between two persons
is shorter than the ultrametric distance between them.
Such hierarchical model illustrates well the small-world
property of social network as implied in the Milgram’s
“six degrees of separation” [10]. Another simple social
network model, introduced by Newman [11], is based on
the concept of bipartite graph [12] and community struc-
ture [13]. The assortativity of this model was studied in
reference [14]. While this model is simple, it reproduces
successfully large clustering coefficient and positive value
of assortative coefficient. While our q-component model is
similar to those models in the spirit of dividing people into
subgroups, however, we assign weights to each person for
each subgroup, and connections are made following those
weights. Also our model is meaningful in the aspect that
each vertex is assigned “multi-component” weights. Thus,
it is noteworthy that the approach we use is different from
those used in references [9,11].

Social network exhibits an interesting feature in the
degree-degree correlation function, different from biolog-
ical or information networks. Newman [15] studied the
degree-degree correlation in terms of the correlation func-
tion between the remaining degrees of the two vertices on
each side of an edge, where the remaining degree means
the degree of that vertex minus one. He introduced the
assortativity coefficient r, defined as

r =
1
σ2

q

∑

j,k

jk(ejk − qjqk), (1)

where ejk is the joint probability that the two vertices on
each side of a randomly chosen link have j and k remain-
ing degrees, respectively. qk is the normalized distribution
of the remaining degree qk = (k + 1)P (k + 1)/

∑
j jP (j),

and σ2
q =

∑
k k2qk−[

∑
k kqk]2. Interestingly, complex net-

works can be classified into three types, having r < 0,
r ≈ 0 and r > 0, called the dissortative, the neutral, and
the assortative network, respectively [15]. The assortativ-
ity or dissortativity can also be identified by a quantity,
denoted by 〈knn〉(k), the average degree of a neighbor-
ing vertex of a vertex with degree k [16]. For the dissor-
tative, the neutral, and the assortative mixing, 〈knn〉(k)
decreases, remains constant, and increases with respect
to k, respectively. Most social networks are assortative as
shown in table 1, while the Internet and the protein in-
teraction network are dissortative. While many in silico
models have been introduced, most of them are neutral.
An exception is the growing network model introduced
by Callaway et al. [17]. Thus it would be interesting to
introduce an in silico model having the assortativity co-
efficient as positive and large as empirical values, which

Table 1. The size N , the mean degree 〈k〉, the diameter d, and
the assortativity coefficient r for a number of social networks.

Name N 〈k〉 d r Ref.
cond-mat 16,264 5.85 6.628 0.185 [18]
arXiv.org 52,909 9.27 6.188 0.363 [18]

Mathematics 78,835 4.16 8.455 0.672 [19]
Neuroscience 205,202 11.79 5.532 0.604 [19]
Video movies 29,824 33.69 4.789 0.222 [20]
TV miniseries 33,980 73.04 3.845 0.379 [20]

TV cable movies 117,655 55.48 3.796 0.135 [20]
TV series 79,663 118.44 4.595 0.529 [20]

would enable one to understand a basic mechanism of so-
cial network formation. We will show that such assorta-
tive networks can be generated via the q-component static
model.

2 Model

The q-component static model network is constructed as
follows. Initially, N vertices are present in the system, rep-
resenting N people in a society. Each vertex is assigned a
q-component weight (w(1)

i , w
(2)
i , . . . , w

(q)
i ), where i is the

vertex index. w
(µ)
i , the µ-th weight of a vertex i, is given as

�
−αµ

i,µ , where �i,µ is the rank of the vertex i in the µ-th sub-
group. We take {�1,µ, . . . , �N,µ} be a random permutation
of the integers {1, . . . , N}. αµ is also taken to be a real ran-
dom number distributed uniformly in the range [0.5, 1). In
general, ranks of a person for different subgroups should
be correlated in real society; however, we take them as
independent in this work for simplicity. As the number
of people N becomes large, the number of distinct sub-
groups q can increase in real world. Thus, q is presumed
to depend on N linearly.

Edges are connected as follows: First, among the q
components, we choose a component µ at random. Sec-
ond, we choose two vertices (i, j) with probabilities equal
to normalized weights, p

(µ)
i ≡ w

(µ)
i /

∑
k w

(µ)
k and p

(µ)
j ≡

w
(µ)
j /

∑
k w

(µ)
k , and attach an edge between them with the

µth color unless an edge in that color exists already. Edge
color is distinct for each component. Note that the pair
(i, j) can be connected via more than one edge in differ-
ent colors. Edges in different component are distinguished
by their own colors. The process of attaching such edges
is repeated until (1 − f)mN edges are added to the sys-
tem. f is a parameter between 0 and 1. We will see that
m is related to the average degree. Since the component
was chosen randomly, the number of edges in one color is
(1 − f)mN/q on average.

To construct a minimal model mimicking social rela-
tions, we need elements playing the role of “weak ties” [21].
So, to take into account of social relationships among peo-
ple having different backgrounds, we suppose that addi-
tional social relationships are formed following the max-
imum weights among the q components each individual
has. The normalized maximum weight of vertex i is defined
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Fig. 1. A network of the q-component static model with pa-
rameters N = 80, m = 2, q = 4 and f = 0.2. Edges in four
colors (red, yellow, green and blue) are the connections within
each group. Edges in orange are those formed by maximum
weights. Edges in more than two colors are colored in black.

as wi,m = max(p(1)
i , . . . , p

(q)
i ). Then two distinct vertices

i and j are chosen with probabilities, wi,m/
∑

k wk,m and
wj,m/

∑
k wk,m, respectively, and are linked by a new color

different from the previous q colors unless such an edge
exists already. This process is repeated until fmN edges
are formed. Edges formed by such maximum weights are
the similar to the activity that people make acquaintances
with strangers belonging to different groups by exchang-
ing their own name cards where social status represent-
ing their own maximum weights is printed. Such edges
can thus be regarded as weak ties, introduced by Gra-
novetter [21] which play an important role in social net-
works, connecting different subgroups. We find that the
assortativity coefficient is enhanced by the presence of
such weak ties.

Networks constructed in this way have mN edges with
(q+1) colors representing internal structure of subgroups.
So, some pair of vertices are linked by more than one edges
in different colors, albeit such incidences are not so fre-
quent when q is large. However, when we measure the
network properties such as the shortest pathways, the de-
gree of a vertex, the assortativity coefficient, and so on,
we regard those multiple edges as a single one. Thus the
mean degree 〈k〉 is slightly less than 2m by about 5% for
typical networks we consider below. A small size network
constructed in this way is shown in Figure 1.

3 Simulation results

We perform numerical simulations for various values of q,
f , m and N , and examine the degree distribution P (k),
the diameter d, the assortativity coefficient r, 〈knn〉(k),
and the clustering coefficients C(N) and C(k) as func-
tions of those parameters. Here the diameter is the aver-
age distance between a connected pair of vertices along
the shortest pathways. All numerical results presented in

Fig. 2. The degree distribution P (k) vs. the degree k obtained
with N = 10000, m = 2, and f = 0.2 for q = 10, 100 and 1000.

this paper are averaged over 100 configurations without
further specification.

First, the shape of the degree distribution depends
on the number of subgroups. As shown in Figure 2, for
small q, the degree distribution follows a power law with
γ ≈ 2.8. However, for large q, it has a highly skewed form,
approximately obeying a power law for a part of its range,
and having an apparently exponential cutoff for larger k.
The SF behavior for intermediate k originates from the
SF behavior inside each subgroup. The degree ki of a ver-
tex i is proportional to the sum of w

(µ)
i over µ = 1, . . . , q

and wi,m. Since there is no any correlation in w
(µ)
i for dif-

ferent (µ)s, it is not obvious what the maximum degree
the vertex i has. Therefore large fluctuation in degree for
large k arises due to the absence of the correlation in w

(µ)
i ,

resulting in the exponential-type decay in P (k). A similar
crossover behavior can be found in real social networks,
for example, the collaboration networks of physicists, biol-
ogists and movie stars (Fig. 1 of Ref. [22]). The degree dis-
tribution shows a peak at low degree, which is also shown
in several other real social networks such as the coau-
thorship network in the field of neuro-science (Fig. 2b of
Ref. [19]) and the movie star co-playing network (Fig. 1b
of Ref. [22]).

Second, we examine the assortative coefficient r as a
function of f for a fixed N and several values of m and q.
As shown in Figure 3, the assortativity coefficient exhibits
a peak around f ≈ 0.2, meaning that the connections
among subgroups are mostly optimized. Thus we limit our
further consideration to the case f = 0.2. Meanwhile, the
diameter gradually decreases with increasing f as shown
in the inset of Figure 3.

Third, we study the assortativity coefficient r as a
function of N for various m and q. It is likely that r
increases with increasing N as r ∼ ln lnN as shown in
Figure 4, but it seems to saturate for larger N . It also
increases with increasing m and q, as shown in Figure 4.
Thus the q-component static model exhibits r values as
large as empirical values listed in Table 1. Some numerical
results of r listed in Table 2 show a quantitative agreement
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Fig. 3. The assortativity coefficient r vs. the parameter f for
various m and q. Inset: f dependence of the diameter d.
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Fig. 4. The assortativity coefficient r vs. ln ln N for various m
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Table 2. Typical simulation results of the diameter d and the
assortative coefficient r obtained under selected conditions of
N , m and q with f = 0.2.

N m q d r similar network

16,000 2 3,200 6.598 0.174 cond-mat

30,000 5 2,000 4.550 0.218 Video movies

with the ones obtained in real social networks. Such an as-
sortative nature can also be checked by positive slope of
〈knn〉(k) [16]. As expected, it increases with increasing k,
as shown in Inset of Figure 4.

Fourth, the diameter d is investigated as a function of
the number of vertices N for various m and q, as shown
in Figure 5. It is found that the diameter is proportional
to d ∼ ln N as in the case of random graph, in which
d ∼ ln N/ ln〈k〉 [23]. Furthermore, the diameter becomes
smaller as m increases, which is like the case of random
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Fig. 5. The diameter d vs. the size N for the same parameters
used in Figure 4.

graphs. However, the diameter is almost insensitive to q.
To test the so-called “six degrees of separation”, we ex-
trapolate the straight line in the semi-logarithmic plot of
Figure 5 to large N for m = 10. We obtain d ≈ 6.0 for
N = 108 and d ≈ 6.7 for N = 109, in reasonable agree-
ment with the Milgram’s “six degrees of separation” [10].
Here the choice of m = 10 comes from the facts that a per-
son knows about 20 other people on average (see Chap. 5
of Ref. [24]).

Recently, it was observed that the diameter of a coau-
thorship network is independent of system size N [19].
Though it is not clear whether such abnormal behavior
is intrinsic or not, we can reproduce such behavior eas-
ily by modifying our model in the following way. It is
known that diameter d is given as d ∼ ln N/ ln〈k〉 with
mean degree 〈k〉 in random graph theory [23]. Thus if the
number of edges grows much faster than the number of
vertices, i.e., in so-called accelerated growth way, then 〈k〉
depends on N , leading to the result that diameter is inde-
pendent of system size N . We also confirm this behavior
with our model. When we assign the number of edges as
proportional to N1+θ (θ > 0), we find that the diameter d
approaches a constant value as N increases.

Fifth, one of the properties well studied for complex
networks is the clustering coefficient C, which is defined
as the average over all vertices of the ratio of the num-
ber of triangles connected to a given vertex to the num-
ber of triples centered on that vertex. It is known that
for the neutral network, the clustering coefficient behaves
as C(N) ∼ N (7−3γ)/(γ−1) [4,11]. Thus when γ = 3,
C(N) ∼ N−1. For the q-component static model, while
r is not close to zero, the rule of attaching edges is such
that no explicit degree-degree correlation enters, so that
it is natural to expect the behavior C(N) ∼ N−1. In-
deed, the measured behavior is close to the expected one
as shown in Figure 6, but the slope in Figure 6 exhibits
small deviations for smaller q. For neutral networks, it is
known that the clustering coefficient of a vertex with k is
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Fig. 6. Plot of C(N) vs. the size N for various m, q and f
values. The slopes of the fit lines are −1.0 for solid and –0.9
for the dashed lines, drawn for the eye. Inset: Plot of C(k)
vs. degree k for various N with fixed m = 2, q = N/20 and
f = 0.2.

almost independent of degree k. Even in our case, we find
that indeed C(k) is independent of k for different N as
shown in the inset of Figure 6.

4 Conclusions

We have introduced the q-component static model assign-
ing a q-component weight to each vertex. The weight of a
given component of a vertex mimics a weight or fitness of
that person in that subgroup. Through this model, we ob-
tained the diameter of the acquaintance network as small
as the Milgram’s “six degrees of separation” and the as-
sortativity coefficient as positive and large as empirical
values for a variety of social networks. The key rule of our
model is motivated from the spirit that the social activ-
ity among people is engaged following maximum weights
each individual has, playing a crucial role in producing
an assortativity coefficient. Moreover, we obtain the de-
gree distribution in a skewed form, which is also similar
to those of real world social networks. The clustering co-
efficients C(N) and C(k) behave as those of a neutral net-
work, being due to the absence of intrinsic degree-degree
correlation. Such deficiency of the present model may be
improved by introducing the hierarchical structure among
subgroups, or correlated ranks of a person for different
subgroups, or nonuniform subgroup size, etc.

Note that the generalization of the static model can
be applied to many other models. For example, the fitness
model introduced in reference [25] can also be generalized
into a multi-component case. In this case the µ-th com-
ponent connection is made between vertices i and j with
probability f(x(µ)

i , x
(µ)
j ) = θ[x(µ)

i + x
(µ)
j − z(µ)] where x

(µ)
i

is the same as defined earlier, θ(x) is the Heaviside step
function, and z(µ) is a threshold of the µ-th component.
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