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Supplementary Text 

 

Percolation transitions for cd d : Analytic solutions for cmt  

 
We consider the probability ( )q   that all randomly chosen m  unoccupied bonds 

are bridge bonds at t , given by btN . This probability is obtained as 
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where ( ) 0q   for c bt N , and BBN  is the number of bridge bonds, given by  
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The exponent 0  is the correlation length exponent for ordinary percolation transition 

(PT), BBd  is the fractal dimension of a pattern formed by bridge bonds (20), and the 

exponent   is an exponent describing the transition behavior of BBN . As BBN  

increases, bridge bonds form a chain or a surface in two and three dimensions, 
respectively, and thus the fractal dimension of bridge bonds is bounded as 

1 BBd d d   . cm  is denoted as 
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across which the order of the PT changes. Numerical values of ( )cm d  for various 

dimensions are listed in Table S1.   
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Next, we calculate the probability that the system reaches a percolating state at   

for the first time, which is given by  
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We call cm  the value at which ( )Q   has its maximum. Then, the relation 
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holds at /cm cm bt N  . cmt  depends on the system size N . We find that ( )cmt N  

behaves differently for the cases cm m  and cm m . When 1 cm m  , ( )cm ct N t  

decreases as a power law 1/~ N   , and when cm m , 1 ( )cmt N  decreases as 
1/~ N   . The exponents are obtained by inserting Eq. (1) into Eq. (5) as 
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and  
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We remark that at ,cm  1( ) ~ ( ) / (1 ) ,
cm

cq N t t t      which may be written as 

1( ) ( ),q N q  where  ( )q t  is independent of .N Then,  ( )q t  satisfies the equation 
 ( ) ln ( ) /q t q t t    and its solution is 

ccmt . Thus, 
ccmt  is finite in the thermodynamic 

limit, which is neither ct  nor unity. Moreover,  ( ) ~ 1q O N  at 
ccmt , and thus the 

probability to actually occupy a bridge bond is non-negligible. 

 

Percolation transitions for cd d  

 
When BBd d  for cd d , the probability ( )q t  in Eq. (1) is independent of the 

system size N  as  
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Then, for finite m , following a similar step as used to derive Eq. (6) from Eq. (5), we 
obtain that  
 

                                       
1/( 1)( ) ~ m

cm ct N t N   .                                                 (9) 

 
Then a continuous PT occurs at ct  in the thermodynamic limit.  

 
If m  varies with N  as ~ lnm N , then cm ct t  is independent of N . That is, cmt  is 

finite. Then, a discontinuous PT occurs at finite cmt , which is neither ct  nor unity. 

Furthermore, when m  is increased faster than ln N  as N  is increased, cmt  increases. 

In this case, we rewrite Eq. (5) as 
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at cmt t , where the prime denotes the first derivative with respect to t . For the case 

lim ln / ( 1) 0,N N m    we obtain a finite cmt  which satisfies the relation 

( ) (1 )cm c cmt t C t   , where C  is const. Actually, this cmt  is the percolation 

threshold of the bridge percolation transition  (20). 
 

Statistical fluctuations of the percolation threshold 
 

Next, we consider the statistical fluctuations of the critical point cmt . To quantify 

the fluctuations, we consider the percolating probability distribution function ( )Q t  

around the critical point cmt . The standard deviation ( , )m N  of cmt  is calculated 

using the relation  
 

21/ ~ (ln ( ))Q t                                                     (11) 
 
at cmt , where the double prime denotes the second derivative with respect to t . Then, 

we obtain that  
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Thus, for cm m  ( cm m ), the fluctuations are relatively large near cm  and become 

smaller with decreasing m  (increasing m ) for a fixed system size. The standard 
deviations shrink with increasing N  for a given m . However, when cm m , the 

standard deviation remains constant, independent of the system size. Thus, it 
generically appears that the explosive percolation threshold fluctuates heavily from 
sample to sample at the tricritical point cm . The theoretical prediction is confirmed 

by simulation data, shown in Fig.S1. On the other hand, from Eq. (12), we can find 
that the exponent   characterizes the scaling relation between length L  and the 
occupation probability t . 
 

Percolation transitions in the product rule model 
 

Here we study the explosive PT for the product rule (PR) model under the best-of-
m strategy in Euclidean space, in which the dynamics proceeds under the suppression 
against the formation of large cluster. At each time, m potential bonds are selected 
randomly, and a set of the products of sizes of the two clusters connected by each of 
these potential bonds are calculated. If a selected potential bond is an intra-bond, then 
the product is taken as the square of that cluster size. The potential bond producing 
the minimum of those products is actually occupied, and the other 1m  potential 
bonds are discarded. Previous studies focused on the case 2m   in Euclidean space 
(6, 13, 14). Here, we want to see the behavior of the PT for general m, and compare it 
with the results for the SCA model.  

 
First, in Fig. S3A, for a given system size, for example, 200L   in two 

dimensions, we examine the behavior of the giant cluster size per node ( )mG t  as a 

function of time t  for various m. The transition point ( )cmt L  is delayed as m  is 

increased. Interestingly, the increase of ( )mG t  for relatively small m such as 

2 8m    is different from that for relatively large m such as 20m  : (i) For those 
small m, ( )mG t  increases sharply. However, the jump size decreases with increasing 

the system size (Fig. S3E). For this case, large clusters are not compact, but contain 
isolated small clusters inside at the onset of the abrupt change of the order parameter, 
denoted as cmt   (Fig. S4A). The cluster size distribution at cmt  , decays as a power-law  

in the small-cluster-size region, but shows a bump in the large-cluster-size region 
(Fig. S4B). (ii) For those large m, ( )mG t  increases irregularly, caused by the 

averaging over plateaus stemming from different configurations (Fig. S3B). Plateaus 
appear when intra-cluster bonds are added to the system. During the transient period, 
small clusters merge with surrounding large clusters, and this merging dynamics 
leads to the formation of compact clusters at cmt  as shown in Fig. S4C. The interface 

between two compact clusters is self-affine with the same fractal dimension as that of 
bridge bonds in the SCA model (Fig. S5). Cluster sizes of such compact clusters are 
almost monodisperse as shown in the cluster size distribution in Fig.S4D, because 
smaller (larger) clusters are more (less) likely to merge to others. We find that the 
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jump size of the order parameter remains finite as the system size is increased (Fig. 
S3F).  

The number of distinct clusters ( )cl cmN t  at cmt  exhibits distinct features. (i) When 

m is small such as 3m  , the extensive relationship ( ) ~cl cmN t N  holds, whereas (ii) 

when m is large, a crossover behavior occurs: For small N , the sub-extensive or the 

system-size independent relationship ( ) ~cl cmN t N  with 1   or 0  appears, 

whereas for large N , the extensive relationship ( ) ~cl cmN t N  holds. This behavior in 

2-dim is shown in Fig. S6A. The crossover point, denoted as *N , scales as * amN e , 
where a  is const. When N  is fixed, the crossover occurs at * ~ lnm N . Thus, as 
N we have *m  . The phase diagram is shown in Fig. S6B. This result is 
intrinsic, independent on dimension. We argue that when the number of clusters 
linearly depends on (is sub-extensive of) system size, the jump size of the order 
parameter decreases (finite). Thus, for the PR model, the PT is continuous in the limit 
N   for a finite fixed m even in low dimensional systems. However, if m  varies 
with system size with the constraint lnm N , then the percolation transition could 
be discontinuous. This result is the same as the mean-field result above the upper 
critical dimension 6ud   for the SCA model. The crossover behavior is also 

observed on random graphs (Fig. S6C and D).  
 
Here, we present a heuristic argument supporting the above numerical results. We 

consider the case (i) with relatively small .m  We show snapshots of the system at 
several time steps to display how the system evolves, finding that small clusters still 
remain above the percolation threshold but large clusters merge, eventually making 
the largest cluster (Fig. S7). As m  is increased, the bump size in the large-cluster-
size region is increased, whereas the small-cluster-size region is reduced (Fig. S8). 
We denote the characteristic cluster size as *s , which divides those two regions. We 

calculate the probability sp  ( lp ) that a cluster of size  * *s s s s   is selected 

randomly as  

   

*

*1
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where ( )sn t  is the cluster size distribution at ,t  and  s lf f  are the mean densities of 

unoccupied bonds in small and large clusters, respectively and (1 )t  is the density 

of unoccupied bonds in the system. The relation 1s lp p   holds. Then, the 

probability that all m  potential bonds are selected in the bump region is given by 

   ,
m

l m lP t p t . If the condition 1
,l mP N   is satisfied, then the probability that an 

unoccupied bond is actually added to a cluster of size *s s   is negligible. Thus, the 
bonds are actually occupied in small clusters, and as a result, clusters become 
compact and ( ) ~cl cmN t N   with 1  at cmt . This condition may be written as 
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ln / lnc lm m N p   unless 0lp  . For ,cm m  small clusters co-exist, and then 

( ) ~cl cmN t N  at cmt . We note that such different cluster shapes for cm m  and 

cm m  can be seen in the SCA model in Fig. S9.  

 

When cm m , clusters are compact, and they merge as time goes on. We consider 

the cluster merging dynamics (Fig. S9) between times cmt  and cmt , at which a single 

macroscopic-scale cluster remains. Because the cluster size distribution has a narrow 
bell shape (Fig.S4D), we assume for simplicity that all cluster sizes are equal. Then, 

the linear size of each cluster is  1/
( ) ~ / ( )

d

cl clL t N N t and the total length of the 

interfaces scales as ( ) ~ ( ) ( ).BBd
BB cl clM t N t L t  Cluster merging process takes place when 

an inter-cluster bond is actually occupied, which occurs with probability,  
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After two clusters are merged, we assumed that remaining clusters are reorganized 
and their sizes are again monodisperse with a larger size but their number is reduced. 
This assumption is viewed in ensemble average perspective. The process is repeated. 
The decreasing rate of the number of clusters is given by  
 

 PR1
( ).cl

b

dN
Q t

N dt
                                                (15) 

Because the abrupt phase transition occurs in a short time interval, we may make the 
approximation  1/ (1 ) 1/ (1 )cmt t    for cm cmt t t   . Using Eqs. (14) and (15), and 

the boundary conditions ( ) ~cl cmN t N  and ( ) 1cl cmN t   , we obtain that 

 (1 ) /~ .BBd d
cm cmt t N                                                (16) 

We have confirmed the exponent numerically in the inset of Fig.S3F. Since the 

exponent is (1 )
0BBd

d


  for 1  , cm cmt t   is reduced to zero as N  , whereas 

the jump size of the order parameter remains as (1)O . Thus, the transition becomes 

sharper as the system size is increased. However, when the system size exceeds *N , 
1  . Thus, the transition becomes continuous. Therefore, the criterion whether 
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1   or 1  in the thermodynamic limit is a good indicator to determine the type of 
PT.  

    It is noteworthy that the PT for the PR model is reduced to the mean-field result 
for the SCA model, which is due to the following reason. In the SCA model, the 
cluster merging dynamics is mainly determined by bridge bonds, of which the 
number is smaller than  O N  below the upper critical dimension, but is of order of 

 O N  in the mean-field limit. In the PR model, however, the cluster merging 

dynamics is determined not only by the selection of unoccupied bonds on the 
interface, but also of intra-cluster bonds, and their total number is  O N . Thus, the 

PT for the PR model is reduced to the mean-field behavior of the SCA model even in 
low dimensions.  

 

Percolation transitions in the Gaussian model 

The Gaussian model (18) was introduced to search a discontinuous percolation 
transition, which is defined as follows: At each time step, an empty bond is selected 
randomly, and is occupied with probability, 

2

~ exp ,
s s

p w
s

    
   

                                                    (17) 

where s  is the cluster size created by occupying the bond and s  the average cluster 
size in the system that would be formed after an empty bond is occupied. w is a 
control parameter defined in the region 0w  . When 0w  , the model is reduced to 
the ordinary percolation model. When 1w  , this model displays compact clusters at 
the onset of the PT, and the transition is discontinuous, independent on spatial 
dimension (18).  

Here, we examine the number of clusters ( )cl cmN t  as a function of the system size 

N  at the onset of the PT. It is expected that for a fixed w , ( )cl cmN t  increases 

linearly with N  for small system sizes, and sub-extensive for large system sizes. 
Indeed, we find that such crossover behavior appear in two dimensions (Fig. S11). 
Thus, for finite w , the percolation transition is discontinuous in the thermodynamic 
limit for the Gaussian model.  
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Figure  S1. 

A. Plot of the percolation thresholds with variance versus system size L  in two 
dimensions for the SCA model. B. Plot of the standard deviations of cmt  versus system 

size L  in two dimensions. They decay in a power-law manner for cm m , and are flat for 

cm m . Solid lines are guidelines with theoretically obtained slopes. All data are 

obtained after averaging over 410  configurations.  
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Figure S2. 

A. and C. Plot of the percolation threshold cmt  versus system size L  for various numbers 

of potential bonds m in three (A) and four (C) dimensions for the SCA model. Dotted 
lines are straight lines. Inset: Successive slopes of cmt  vs. L  for 6cm   (A) and 17cm   

(C). They tend to decrease to zero, which implies that cmt  converges to a finite value. We 

also checked that the successive slopes of 1 cmt  and cm ct t  decrease to zero at cm . This 

indicates that cmt  is finite, neither ct  nor 1. B. and D. Plot of scaling relations, cm ct t  vs. 

L  for cm m  and 1 cmt  vs. L  for  cm m  in three (B) and four (D) dimensions. Dotted 

lines are guidelines with theoretically obtained slopes. All data are obtained after 
averaging over 410  configurations.  
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Figure S3. 

A. Plot of the giant cluster size ( )mG t  vs. time t  after ensemble average for various m for 

the PR model in two dimensions. Data are obtained for m  1, 2, 3, 5, 8, 10, 20, 30, 50, 
100, and 300 from the left to the right with a fixed size 300L  . B. Similar plot of ( )mG t  

for 30m   and 200L   after ensemble average (dotted line) and for a single 
configuration (solid lines). C. and D. Plot of the giant cluster ( )mG t  vs. time t  for fixed 

2m  (C) and 30m   (D), but various system sizes L 100, 300, 700, 1500, 3000, and 
5000 from the right to the left. As the system size increases, a giant cluster grows more 
drastically. E. Plot of the jump size vs. system size N  for 2m  . For cm m , jump size 
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is measured as the height of ( )mG t  just after the abrupt growth. Solid line is a guideline 

with slope 0.02 . Inset: Plot of the maximum value of ( )mdG t dt  vs. system size N . 

Solid line is a guideline with slope 0.48 . F. Plot of the jump size vs. system size N  for 
30m  . In this case ( cm m ), jump size is measured as the height when a large-scale 

plateau takes place. The estimated jump size is independent of N . Inset: Plot of the 
maximum value of ( )mdG t dt  vs. system size N . Solid line has slope 0.57, consistent with 

the theoretical value (1 ) /BBd d . Data for ( )mG t  and G  are obtained after averaging 

over  410  configurations. 
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Figure S4. 

Snapshots of clusters for the PR model at time cmt  at which the order parameter begins to 

increase drastically. The data are obtained from two dimensional systems with linear size 
200L  , but for different m values. For small 2m   (A), clusters contain small-sized 

clusters within them. For large 30m   (C), clusters are compact. Plot of the cluster size 
distributions for 2m   (B) and 30m   (D) at cmt . Data in B and D are obtained after 

averaging over 310  configurations in two dimensions with linear size 310L  . Solid line 
in (B) has slope 1.95 . 
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Figure S5.  
Plot of the number of unoccupied bonds which inter-connect one cluster and its neighbor 
if occupied (perimeter) vs. radius of gyration of each cluster for 10m   and 30 in two (A) 
and three (B) dimensions at cmt  for the PR model. Thus, the slope means the fractal 

dimension of perimeter of clusters. Solid lines are guidelines with slopes 1.22 (A) and 2.5 
(B), respectively. Simulation results are obtained after averaging over 310  configurations. 
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Figure S6. A. Plot of the number of clusters at cmt t  vs. system size N  for several 

values of m for the PR model in two dimensions (A) and random graphs (C). Dashed and 
solid lines are guidelines with slopes one and 0.05, respectively. A crossover behavior 
occurs between the behaviors  ~  0.05clN N    for *N N  and ~clN N  for 

*N N , at the point * ~ amN e  ( const.a  ), which are represented by the solid curves in 
B and D. Red squares in B and D are estimated values of *N  from the numerical data in 
A and C. All data are obtained after averaging over 410  configurations. 
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Figure S7. Snapshots of clusters in the system with 200L   at several time steps for 

2 cm m   for the PR model at xt  in ( c x cmt t t  ) (A), cmt  (B), cmt  (C), and cmt (D). 

Even after the giant cluster is formed, small-sized clusters still remain in the system. 
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Figure S8. Plot of the density of s-sized clusters at cmt  vs. cluster size s in 2-dim with 

system size 310L   for several m. As m is increased, bump size is increased, and the 
small-cluster-size region is reduced. Here *s  is the characteristic size beyond which the 
bump is distinct. All data points are obtained after averaging over 410  configurations.  
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Figure S9. Snapshots of clusters for the SCA model when 2m   (A) and 5 (B) in the 
system with 200L   at cmt . Two large clusters are not compact but include small clusters 

in A, but compact in B.  
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Figure S10. Snapshots of clusters for 30 cm m   in a system with  200L   for the PR 

model at several time steps when jumps arise as shown in Fig. S3B.  
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Figure S11. Plot of the number of clusters clN  at cmt  as a function of system size N  for 

several w values for the Gaussian model in two dimensions. Data are for 
8 6 4 20,10 ,10 ,10 ,10 ,w     and 1 from the top. Dashed line is a guideline with slope 1. For 

810w   (open circle), a crossover can be seen from the behavior ~clN N  in small-N 

region to the one ~clN N  with 1   in large-N region. All data are obtained after 

averaging over 310  configurations. 
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Table S1. List of numerical values of ( )cm d  for dimensions 2 6d   . The values for   

and BBd  were measured in (16). * The standard deviation becomes larger than the mean 

value cm . 

 

 
 
 


