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Multiplex networks (MNs) have become a platform of recent research in network sciences because networks
in many real-world systems interact and function together. One of the main scientific issues in MNs is how the
interdependence changes the emerging patterns or phase transitions. Until now, studies of such an issue have
concentrated on cluster-breakdown phenomena, aiming to understand the resilience of the system under random
failures of edges. These studies have revealed that various phase transition (PT) types emerge in MNs. However,
such studies are rather limited to percolation-related problems, i.e., the limit q → 1 of the q-state Potts model.
Thus, a systematic study of opinion formation in social networks with the effect of interdependence between
different social communities, which may be seen as the study of the emerging pattern of the Ising model on
MNs, is needed. Here we study a well-known spin model called the Ashkin-Teller (AT) model in scale-free
networks. The AT model can be regarded as a model for interacting systems between two species of Ising spins
placed on respective layers in double-layer networks. Our study shows that, depending on the interlayer coupling
strength and a network topology, unconventional PT patterns can also emerge in interaction-based phenomena:
continuous, discontinuous, successive, and mixed-order PTs and a continuous PT not satisfying the scaling
relation. The origins of such rich PT patterns are elucidated in the framework of Landau-Ginzburg theory.
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I. INTRODUCTION

In the past decade a surge of scientific interest has
been directed at studying emerging phenomena in complex
systems. These include various cooperative phenomena such
as blackouts of power systems [1], spreading of disease [2,3],
and formation of opinion [4,5]. In these phenomena, macro-
scopic patterns or phases emerge via the interactions between
individual components. Therefore, the fundamental question
about these phenomena is how to understand the origin of
various emerging phases and the transition nature between
the phases. In the early stage of these studies, this question
was mainly investigated in terms of a single complex system
and its topological effects was a central issue. However,
many complex networks in real-world systems are in fact
interdependent and it was found that such interdependence
can also affect the emerging patterns significantly [1,6]. This
finding triggered extensive studies on emerging phenomena on
multiplex (or interdependent) networks (MNs) [7–9]. Here the
MN is a network of networks in which nodes on one network
are identical to those on another network.

Such effect of MNs were first investigated for the cluster-
breakdown phenomena in the framework of percolation
theory [1,6]. In these studies, the robustness of a complex
network system is investigated by removing edges or nodes
in a complex network system. Here the fraction of nodes
in a remaining giant component is the order parameter for
percolation transition. This order parameter is reduced to
zero as the number of removed edges or nodes is increased
beyond a certain percolation threshold. Then a percolation
transition takes place, which is conventionally continuous in
a monolayer network [9]. However, it was found that the
abrupt transition can occur in MNs. For example, failure of
a node in one network can cause failure of nodes in the other
networks, leading to cascading back-and-forth failures [1].

Then a discontinuous phase transition (PT) occurs. Thereafter,
variations of the percolation model to study the resilience
of MNs were proposed and richer PT patterns emerged; an
even mixed-order (or hybrid) PT [6,10,11] was reported.
Here the mixed-order PT is the transition where features of
both continuous and discontinuous PTs appear at the same
transition point. Note that the mixed-order PT has been found
in several physical models, such as the bootstrap model [12],
jamming percolation [13,14], the Ising model with long-range
interactions [10], the synchronization model [15], and the
percolation transition on multiplex networks [6].

Besides percolation phenomena, one can also expect that
interdependence of social networks diversifies the emerging
PT patterns and sometimes induces an unexpected PT in gen-
eral interaction-based phenomena [16]. This expectation can
be supported by the recent revolutionary wave that occurred
in the Middle East and North Africa, called Arab Spring.
In this movement, strengthened interactions between civil
societies in different nations via social media have an important
role causing avalanching revolutions, which is unprecedented.
This example clearly shows that PT patterns of social phases
could be significantly affected by the interdependence of
networks.

Since such interdependence is expected to be stronger in the
future, it is of crucial importance to systematically investigate
the effect of interdependence as well as the topology of the
network on PT patterns for opinion-formation phenomena
in MNs. For this investigation, the Ising model is a proper
one, which has been used to study the problems of opinion
formation in social networks and is often analytically solvable.
Each spin direction of the Ising model represents one of
two opposite opinions in social issues. Examples include the
Sznajd model [4] and the voter model [5]. We remark that most
studies focus on the dynamics of opinion formation. However,
here we are interested in a phase diagram created by the Ising
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FIG. 1. (Color online) The AT model on a monolayer network
can be regarded as a two-species-of-Ising-spin model with an
interlayer interaction (dashed lines) on a double-layer network. Here
two identical layers form this multiplex networks and the coupling
between these layers are realized by the four-spin coupling attached
to each link.

model on MNs, which is helpful in understanding diverse
patterns created through the dynamics of opinion formation
in a single framework. Those studies were carried out mostly
on monolayer networks; however, a few of them have been
extended to the case on multilayer networks [17,18]. Suchecki
and Hołyst [19] also studied the Ising model on a double-layer
MN. Interestingly, it exhibited a discontinuous PT, whereas
it shows a continuous PT in a monolayer network. These
results led us to speculate that the pattern of the PT can be
changed systematically by controlling the interlayer coupling
strength; in the above examples, zero coupling strength (no
connection) results in a continuous PT, whereas finite coupling
strength leads to a change in PT type to a discontinuous PT.
However, a systematic understanding of it has been absent
thus far.

To systematically understand the role of interdependence
as well as the topology of a network in a single framework,
here we study an Ising spin model called the Ashkin-Teller
(AT) model [20] on monolayer scale-free (SF) networks. The
AT model contains two species of Ising spins: the s spin and
the σ spin. We want to regard these as a single species of
Ising spin placed on the respective layers of a double-layer
MN with interlayer interaction, as shown in Fig. 1. By
controlling the strength of the interlayer interaction and the
topology of a network, the change in PT type is investigated
systematically. By applying Landau-Ginzburg theory to the
AT model on SF networks, we obtain a rich phase diagram
containing the paramagnetic, Baxter (ferromagnetic), and
so-called 〈σs〉 phases (in which the product of the σ and s

spins is ordered, but 〈s〉 = 〈σ 〉 = 0). The PTs between those
phases also include diverse types: continuous, discontinuous,
successive (a discontinuous jump in the order parameter after
continuous PT), and mixed-order PTs. These intriguing diverse
patterns of PTs originate from the unconventional extension
of the first-order PT lines in the phase diagram. In particular,
such an extension creates the critical end (CE) points, where
the mixed-order PT occurs. Finally, by calculating the critical
exponents explicitly, we find that the PT of the product of the
σ and s spins does not satisfy the scaling relations even at the
continuous PT point.

II. MODEL AND FORMALISM

Let us start by introducing the AT model specifically. Two
species of Ising spins, si and σi with states si = ±1 and σi =
±1, respectively, are placed at each node i, as shown in Fig. 1.
The Hamiltonian of the AT model without an external field,
denoted by Ho, is represented as

−βHo = K2

∑
〈i,j〉

sisj + K2

∑
〈i,j〉

σiσj + K4

∑
〈i,j〉

siσisjσj , (1)

where β = 1/kBT with the Boltzmann constant kB and tem-
perature T , K2 = βJ2 and K4 = βJ4 with coupling constants
J2 and J4, and 〈i,j 〉 runs over all pairs of nodes connected
by links. We study the AT model on the SF network, which
is a random graph where each node has a heterogeneous
number of connections, referred to as degree k, following
the power law Pd (k) = Nλk

−λ. The coupling between the
two layers is shaped in the form of the four-spin interaction
with the coupling constant J4. Thus, the topology and the
interdependence of a network can be controlled by two
parameters, λ and x ≡ J4/J2, respectively.

We now calculate the mean-field free energy for the
Hamiltonian (1). The local order parameter acting on the spins
s, σ , and sσ at node i are, respectively, referred to as mi

s ,
mi

σ , and mi
sσ , where mi

s = 〈si〉, mi
σ = 〈σi〉, and mi

sσ = 〈sσi〉.
Here 〈· · · 〉 is the ensemble average of a given quantity. Next
we expand each spin about the local order parameter as
si = mi

s + δmi
s , σi = mi

σ + δmi
σ , and sσi = mi

sσ + δmi
sσ . By

neglecting the higher-order terms in δmi
s , δmi

σ , and δmi
sσ , the

mean-field Hamiltonian HMF is rewritten as

−βHMF � −K2

∑
〈i,j〉

(
mi

sm
j
s + mi

σmj
σ

) − K4

∑
〈i,j〉

mi
sσ mj

sσ

+K2

∑
〈i,j〉

2mj
σ (si + σi) + K4

∑
〈i,j〉

2mj
sσ siσi . (2)

Then the mean-field free energy F is obtained as

βF = − ln Z � − ln
∑
{si ,σi }

e−βHMF = −
∑

i

ln Zi

+K2

∑
〈i,j〉

(
mi

sm
j
s + mi

σmj
σ

) + K4

∑
〈i,j〉

mi
sσ mj

sσ , (3)

where

Zi = 4[ci(s)ci(σ )ci(sσ ) + si(s)si(σ )si(sσ )], (4)

with ci(α) ≡ cosh(
∑

j (i) K2m
j
α) and si(α) ≡ sinh(

∑
j (i)

K2m
j
α) for α = s and σ . ci(sσ ) ≡ cosh(

∑
j (i) K4m

j
sσ ) and

si(sσ ) ≡ sinh(
∑

j (i) K4m
j
sσ ). Here

∑
j (i) denotes that the

summation runs over all nearest neighbors j of node i.
In order to make the summation tractable, we used the an-

nealed network approximation
∑

〈i,j〉 Aij → ∑
i �=j

kikj

2N〈k〉Aij ,
where N is the total number of nodes, 〈k〉 is the mean degree
of a network, and Aij is a given function of i and j . Such an
annealed approximation has proven to yield reasonable results
of various critical phenomena in complex networks [21,22].

We also used the global magnetization mα as mα =∑
i kim

i
α/N〈k〉, where α represents either s, σ , or sσ . Then

we set ms = mσ ≡ m and msσ ≡ M , taking advantage of the
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symmetry σ ↔ s. The two order parameters m and M , in
the AT model, will be referred to as m magnetization and M

magnetization, respectively.
By rewriting the free energy in terms of m and M after the

annealed approximation, f ≡ βF/N is given by

f � −2
∫ ∞

kmin

ln[cosh(K2mk)]Pd (k)dk

−
∫ ∞

kmin

ln[cosh(K4Mk)]Pd (k)dk

−B1 + K2m
2〈k〉 + 1

2
K4M

2〈k〉, (5)

where

B1 =
∫ ∞

kmin

ln[1 + tanh2(K2mk) tanh(K4Mk)]Pd (k)dk. (6)

The minimization conditions ∂f

∂m
= 0 and ∂f

∂M
= 0 lead to the

following self-consistent relations:

m〈k〉 =
∫ ∞

kmin

tanh(K2mk)[1 + tanh(K4mk)]

1 + tanh2(K2mk) tanh(K4Mk)
kPd (k)dk (7)

and

M〈k〉 =
∫ ∞

kmin

tanh(K4Mk) + tanh2(K2mk)

1 + tanh2(K2mk) tanh(K4Mk)
kPd (k)dk. (8)

There exist three possible solutions for Eqs. (7) and (8): the
paraphase (m = M = 0), the Baxter phase (m,M > 0), and
the 〈σs〉 (m = 0 and M > 0) phase. However, the condition
m > 0,M = 0 cannot satisfy the above relations.

To obtain the susceptibility, we also consider an AT
Hamiltonian with an external field, which is written as

−βH = −βHo +
∑

i

kiH2(si + σi) +
∑

i

kiH4siσi, (9)

where the external fields H2 and H4 are weighted by the degree
of each node. Then the relations between the free energy
and magnetization hold −∂f/∂H2 = 2m〈k〉 and −∂f/∂H4 =
M〈k〉. The corresponding free energy and self-consistent
relations are simply given by the substitution of K2mk and
K4Mk in the integrations of Eqs. (5)–(8) to (K2m + H2)k and
(K4M + H4)k, respectively [see Eqs. (B1) and (B2)]. Next, by
taking the partial derivative of m (M) with respect to H2 (H4)
and then taking the limit H2,H4 → 0, we obtain the suscepti-
bilities χm ≡ ∂m/∂H2|H2,H4→0 (χM ≡ ∂M/∂H4|H2,H4→0).

III. RESULTS

In this section we begin by describing the schematic phase
diagrams obtained for the AT model to provide an overview
to the reader. Figures 2(a) and 2(b) show schematic phase
diagrams in the parameter space (x ≡ J4/J2,T

−1) for λc <

λ < 4 (λc ≈ 3.503) and (x,λ) for 3 < λ < 4, respectively,
obtained based on the criteria discussed in the following
sections. The phase diagram of the AT model on a regular
d-dimensional lattice in the mean-field limit [23] looks similar
to Fig. 2(a); however, the important different feature is the
emergence of the extended first-order PT lines between the
critical point and the CE point. In the mean-field solution
on a regular lattice, these extended lines were absent, thus

(b)
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FIG. 2. (Color online) Schematic phase diagram in the spaces
(a) (x,T −1) for λc < λ < 4 and (b) (x,λ) for 3 < λ < 4. The
acronyms are defined as follows: CP, critical point; CE, critical end
point; and TP, tricritical point. The upper dashed line in (b) is a guide
for the free energy profiles we examine in Fig. 4.

the CE points with asterisks in Fig. 2(a) became tricritical
points [23]. On SF networks with 3 < λ < 4, owing to the
extended first-order lines, diverse PTs emerge depending on
λ and x as shown in Fig. 2(b). For example, different from
the tricritical point at which continuous PT occurs, at the CE
points the first- and the second-order lines meet, which induces
the mixed-order PT; a discontinuous jump in magnetization
occurs, but susceptibility diverges as a power law as the
second-order PT. In addition, the extended first-order lines
induce successive PT, where the continuous PT is followed by
a discontinuous PT as temperature decreases. In the following
sections we explain the detailed features of the phase diagram
and PT patterns for the particular cases x ≡ K4/K2 = 0 and
x = 1 first and then for the cases x < 1 and x > 1.

A. Case x = 0 (no interlayer interaction)

When K4 = 0, the AT model reduces to the Ising model
on a monolayer network, which shows only continuous PT.
This has been extensively studied in various works [24,25].
In this case, the system is ordered for all temperatures for
2 < λ � 3. The AT model behaves similarly for this range
of degree exponent. Thus, we concentrate on the case λ > 3
in this study. The critical exponents for 3 < λ < 5 are listed
in Table I. Here the heat capacity is C ∼ (−t)−α , for w ∈
m,M the w magnetization at zero field is w ∼ (−t)βw , and
the susceptibility for w magnetization in the limit t → 0±
is χw± ∼ (±t)−γw± , where t = (T − Ts)/Ts . In this case, the
scaling relation between exponents holds.
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TABLE I. Critical exponents for 3 < λ < 5. The heat capacity
is C ∼ (−t)−α , the w magnetization at zero field is w ∼ (−t)βw ,
and the susceptibility for w magnetization in the limit t → 0± is
χw± ∼ (±t)−γw± , where t = (T − Ts)/Ts .

Range of x α βm βM γm− γm+ γM− γM+

x = 0 λ−5
λ−3

1
λ−3 1 1

x = 1 (λ < λc) λ−5
λ−3

1
λ−3

1
λ−3 1 1 1 1

x = 1 (λ = λc) −1 1 1 1 1 1 1

0 < x < 1 λ−5
λ−3

1
λ−3

λ−2
λ−3 1 1 0 0

x > 1 (region III) λ−5
λ−3

1
λ−3

1
λ−3 1 1 1 1

B. Case x = 1 (balanced interlayer coupling strength)

When x = K4/K2 = 1, the single spin and spin product
become indistinguishable. Then m = M and the AT model
is reduced to the four-state Potts model [26]. Expanding the
free-energy density (5) up to third order in m gives

f � 3

2
K2m

2〈k〉
(

1 − K2〈k2〉
〈k〉

)
+ (3C1 − C2)(K2m)λ−1

+ Nλk
4−λ
min

4 − λ
(K2m)3 + Ohigher, (10)

where both C1 ≡ C1(λ) and C2 ≡ C2(λ) are positive and O

denotes higher orders. Definitions for all coefficients Ci are
given in Appendix A.

The PT patterns are determined by the sign of 3C1 − C2.
When 3C1 − C2 > 0, which occurs for λ < λc ≈ 3.503, the
second-order PT takes place at Ts ≡ J2〈k2〉/kB〈k〉 with the
critical exponent βm = 1/(λ − 3). Then α = (λ − 5)/(λ − 3)
from C ∼ ∂2f/∂2t . When 3C1 − C2 < 0 for λ > λc, the first-
order PT occurs at Tf (>Ts). Here Tf is the point at which the
free energy discontinuously becomes a global minimum at a
finite m. When 3C1 − C2 = 0 at λc, the continuous transition
occurs at Ts , but the critical exponent differs as βm = 1 and α =
−1. This is the conventional tricritical point (TP), as shown
in Fig. 3(h). The susceptibility at the TP also obtained, which
diverges at both T +

s and T −
s with the critical exponent γm =

γM = 1.

C. Case 0 < x < 1 (unbalanced interlayer coupling strength)

When x = K4/K2 �= 1, Eqs. (7) and (8) can be expanded
in terms of m and M as follows:

m〈k〉
(

1 − Ts

T

)
� C3(K2m)λ−2 + B2 + Ohigher, (11)

M〈k〉
(

1 − xTs

T

)
� C4(K4M)λ−2 + C5(K2m)λ−2 + Ohigher,

(12)

where C3(λ,r0) < 0, C4(λ,r0) < 0, and C5(λ,r0) > 0 are
numbers of O(1) and they depend on λ and r0 ≡ K4M/K2m.
Here B2(K2m,K4M,λ) > 0 (defined in Appendix A) and
its order depends on the ratio M/m. These expansions are
possible near a continuous transition point at which m > 0
and M 
 1.

For x < 1, as temperature is decreased from a sufficiently
large value, the second-order transition for the m magnetiza-
tion takes place first at Ts because Ts > xTs . Near Ts , the term
1 − xTs/T in Eq. (12) is a number of O(1) and so M and
Mλ−2 for λ > 3 cannot be of the same order. Instead, M and
mλ−2 should be of the same order and they are related as

M � C5(λ,0)

〈k〉(1 − xTs/T )
(K2m)λ−2. (13)

Using Eq. (13), one can show that B2 is of higher order than
mλ−2. Therefore, from Eq. (11), m ∼ (Ts − T )βm with βm =
1/(λ − 3) and M ∼ (Ts − T )βM with βM = (λ − 2)/(λ − 3).
Then, near this second-order transition point, the heat capac-
ity is given by C ∼ (−t)α , with α = (λ − 5)/(λ − 3) from
Eq. (14).

The difference in the order of magnitude between m and
M , induced by the unbalanced interaction-coupling strength,
significantly changes the feature of the free energy compared
with that for the x = 1 case as follows. Using Eq. (13), we
expand the free energy (5) up to the three lowest-order terms
with respect to m as

f (m) � K2m
2〈k〉

(
1 − Ts

T

)
+ 2C1(K2m)λ−1

− K4C5(λ,0)2

2〈k〉(1 − xTs/T )
(K2m)2(λ−2) + Ohigher. (14)

Here the (λ − 1)-order term is always positive, whereas the
2(λ − 2)-order term is negative. Therefore, the transition
nature is not determined only by the sign of the (λ − 1)-order
term as usual. However, competition between the magnitudes
of (λ − 1)- and higher-order terms produces an interesting PT
for λc < λ < 4. Note that the coefficient of the 2(λ − 2)-order
term varies depending on T , x, and λ.

When λc < λ < 4, the qualitative feature of the phase
diagram is insensitive to λ. Thus, we consider the free energy
as a function of x and T . First, we sketch the behavior of
f (m) vs m for different values of x. When x is close to
zero, the 2(λ − 2)-order term is negligible compared with the
(λ − 1)-order term and the global minimum is located at m = 0
for T � Ts [Fig. 4(a)]. When T is decreased below Ts , the m

position of the global minimum increases continuously, which
leads to a continuous transition. On the other hand, when x

is close to one, the 2(λ − 2)-order term can make a global
minimum of f (m) at a certain finite m ≡ m2 for T � Tf ,
where Tf > Ts . Then a discontinuous transition takes place at
Tf [Fig. 4(e)].

In the intermediate regime I, which is equal to [xc,xe], as
temperature is decreased across Ts , the free energy exhibits a
global minimum at m1(T ) > 0, which increases continuously
as the temperature is lowered further. In the meantime, a local
minimum of f (m) develops at a certain m2(T ) > m1(T ) due
to the 2(λ − 2)-order term. As the temperature is lowered
further beyond a certain temperature, denoted by Tf (<Ts),
the local minimum at m2 becomes a global minimum, as
depicted in Fig. 4(c). That is, f (m2(T −

f )) < f (m1(T −
f )) < 0.

Accordingly, the magnetization jumps discontinuously from
m1 to m2 at Tf . Thus, the system exhibits a discontinuous
transition at Tf . Such successive PTs occur in the intermediate
regime of x.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 3. (Color online) Plot of the order parameter vs temperature T = K−1
2 (setting kB = 1) for some particular cases based on numerical

values, obtained from Eqs. (5), (7), and (8) by direct integration. The parameter space (x,λ) is specified for each case.

Next we consider particular points at the boundaries of
the regime I in Fig. 2(a). The first-order line terminates
at a certain point xc, which is called the critical point, as
seen in a liquid-gas system. At this point, the transition is
continuous and the behavior of f (m) is shown in Fig. 4(b).
On the other hand, the second-order line terminates at a

point called the CE point, where the first-order line continues
into the regime x > xe. This CE point occurs at temperature
Ts , at which there exist two minima in the free-energy
function at m = 0 and m2 (m2 > 0), but f (m) = f (m2) = 0
as shown in Fig. 4(d). Thus, Tf = Ts . At T +

s , the magne-
tization is zero, but at T −

s , which is equivalent to T −
f , the
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(b)
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FIG. 4. (Color online) Plots of free energies f (m) vs m for
several cases. Suppose that we take a fixed λ = 3.88 and increase
the x value from 0.6 to 0.8 in Fig. 2(b). (a) When x < xCP ≈ 0.71,
the free energy exhibits a global minimum at m = 0 for T � Ts

and a finite m > 0 for T < Ts , which increases gradually as T is
decreased beyond Ts . The PT is continuous. (b) At a critical point
xCP, as temperature is lowered further beyond Ts , a local minimum
develops at m2 besides a global minimum of f (m). At Tf , these two
minima merge. The PT is continuous. (c) When x is increased further
and is located inside region I, a local minimum at m2 becomes a
global minimum at Tf . Second-order and first-order transitions can
take place successively. (d) When x = xCE ≈ 0.77, there exist two
minima in f (m) at m = 0 and m2 > 0 and the free energies at these
m values are zero. The second derivative of f (m) at m = 0 is also
zero at Ts . A mixed-order PT takes place. (e) When x is increased
further and is located in the first-order region, the second derivative of
f (m) at m = 0 is not zero and a local minimum at m2 > 0 becomes
a global minimum at Tf . A first-order PT takes place.

magnetization jumps to m2 > 0 and the system shows a
discontinuous PT.

Ts

at CE (Ts = 2.0101,  x = 0.7,  λ = 3.99)

FIG. 5. (Color online) Susceptibility χm vs temperature at the CE
point. As derived in Eq. (15), χm is shown to follow a power law
behavior around the temperature Ts , which is indicated with a vertical
dashed line.

We also obtain the susceptibility of m magnetization for
continuous PT near Ts as

χm ≈
{

T 〈k2〉
〈k〉 (T − Ts)−1 for T > Ts

T 〈k2〉
〈k〉(λ−3) (Ts − T )−1 for T < Ts,

(15)

which is derived in Appendix B. Thus, the susceptibility expo-
nent is γm± = 1. Then the scaling relation α + 2βm + γm− = 2
holds for m magnetization. This result is valid near any point
along the second-order transition line, but not at the CE point.
At the CE point, χm diverges as Eq. (15) for T +

s and becomes
finite for T −

s as shown in Fig. 5 (see Appendix B for detailed
calculations). Since the m magnetization is discontinuous but
susceptibility χm diverges at the CE point, a mixed-order
transition emerges at the CE point.

Interestingly, the susceptibility of the M magnetization
shows different behavior. Near Ts it is given by

χM ≈ T 〈k2〉
〈k〉(T − xTs)

. (16)

Although the M magnetization exhibits a continuous PT at
Ts , the susceptibility does not diverge, that is, γM± = 0. In
addition, the scaling relation for M magnetization does not
hold as

α + 2βM + γM− = 3 �= 2. (17)

This indicates that the usual scaling hypothesis is not appli-
cable in explaining this scaling phenomenon. This anomaly
seems to originate from the scaling effects of H2 and H4 fields
not being independent of each other. Nevertheless, Eq. (17)
satisfies the Rushbrooke inequality α + 2β + γ � 2 [27].

Consider the phase diagram in the space (x,λ) for 3 < λ <

4 [Fig. 2(b)]. As λ → λ+
c , regimes I and II of the successive

transitions shrink to the tricritical point at x = 1 and λc.
Remarkably, the upper boundary of regimes I and II becomes
a critical end point line on which mixed-order PTs take place.

D. Case x > 1 (unbalanced interaction)

When x > 1, besides the paraphase and the Baxter phase,
the 〈σs〉 phase also exists. As shown in Fig. 2(a), three
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regimes exist: In the first-order transition regime near x = 1+,
a discontinuous PT occurs at Tf from the paraphase to the
Baxter phase, as depicted in Fig. 3(d). The difference is that
M is larger than m. In regime III for x � 1, M and m

undergo the second-order PT at different temperatures xTs

and T ′
s [=Ts/(1 − C6)], respectively, as shown in Fig. 3(e).

Then the 〈σs〉 phase exists between xTs and T ′
s . Note that

the critical exponent for both magnetizations M and m at xTs

and T ′
s is βM = βm = 1/(λ − 3). In the intermediate range of

x, regime II exists, where more than one type of PT occurs
successively as in regime I. In addition, mixed-order PTs also
occur at the CE points.

IV. CONCLUSION

In this study we investigated the Ising spin model on a
double-layer scale-free network using the AT model in the
mean-field approximation. We obtained a rich phase diagram
containing diverse types of phase transitions, such as second-
order, first-order, successive, and mixed-order PTs, and diverse
types of transition points, such as critical, CE, and tricritical
points. In particular, CE points exist, as in liquid 3He-4He
mixtures [28] and metamagnets [29], at which the mixed-order
transitions emerge in the AT model we studied. The rich phase
diagram is created as collective phenomena of spins for the
asymmetric case (x �= 1) between the intralayer and interlayer
interaction strengths. Note that the CE points do not exist
but are reduced as a tricritical point for the symmetric case
(x = 1). We also found the violation of the scaling relation
for M magnetization; the proper form of the scaling function
should be studied in the future. We anticipate that such a
rich phase diagram obtained in thermal equilibrium systems
could be a guideline for understanding complex phenomena
in multilayer networked systems.
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APPENDIX A: DEFINITIONS FOR COEFFICIENTS

The coefficients Ci and B2 are defined as follows:

C1(λ) = Nλ

∫ ∞

0

(
− ln[cosh y] + 1

2
y2

)
y−λ,

C2(λ) = Nλ

∫ ∞

0
ln[1 + tanh3 y]y−λdy,

C3(λ,r0) = Nλ

∫ ∞

0

[
tanh y

1 + tanh2 y tanh(r0y)
− y

]
y1−λdy,

C4(λ,r0) = Nλ

∫ ∞

0

[
tanh y

1 + tanh y tanh2(y/r0)
− y

]
y1−λdy,

C5(λ,r0) = Nλ

∫ ∞

0

tanh2 y

1 + tanh2 y tanh(r0y)
y1−λdy,

C6 = NλK2

〈k〉
∫ ∞

kmin

tanh(K4Mk)k2−λdk,

B2 = Nλ

∫ ∞

kmin

tanh(K2mk) tanh(K4Mk)

1 + tanh2(K2mk) tanh(K4Mk)
k1−λdk.

(A1)

APPENDIX B: SUSCEPTIBILITY

With the definitions 
2 ≡ K2m + H2 and 
4 ≡ K4m +
H4, the self-consistent relations for m and M of the AT
Hamiltonian with an external field (9) are given as follows:

m〈k〉 =
∫ ∞

kmin

tanh(
2k)[1 + tanh(
4k)]

1 + tanh2(
2k) tanh(
4k)
kPd (k)dk (B1)

and

M〈k〉 =
∫ ∞

kmin

tanh(
4k) + tanh2(
2k)

1 + tanh2(
2k) tanh(
4k)
kPd (k)dk. (B2)

First, we consider the susceptibility at the second-order
transition point. The self-consistent equation for m (B1) for
x �= 1 is expanded with respect to small m and M as

m〈k〉 � 
2〈k2〉 + C3

(
λ,


4


2

)

λ−2

2 . (B3)

By taking the partial derivative of the above equation in terms
of H2 and then taking the limit H2,H4 → 0, we have

χm〈k〉 � (K2χm + 1)〈k2〉

+C3

(
λ,

K4M

K2m

)
(λ − 2)K2χm(K2m)λ−3, (B4)

where χm is the susceptibility of m and is defined as
∂m
∂H2

|H2,H4→0. When the second-order phase transition occurs

at Ts , m = 0 for T > Ts and C3(λ,K4M
K2m

)(K2m)λ−3 ≈ 〈k〉
K2

(1 −
Ts/T ) for T < Ts near Ts . Then we get (15). Similarly, the
self-consistent equation for M (B2) can be expanded as

M〈k〉 � 
4〈k2〉 + C4

(
λ,


2


4

)

λ−2

4 + C5

(
λ,


4


2

)

λ−2

2 .

(B5)
Taking the partial derivative of the above equation by H4 and
then taking the limit H2,H4 → 0 gives

χM〈k〉 � (K4χM + 1)〈k2〉

+ C4

(
λ,

K2m

K4M

)
(λ − 2)K4χM (K4M)λ−3

+ C5

(
λ,

K4M

K2m

)
K2

∂m

∂H4

∣∣∣∣
H2,H4→0

(K2m)λ−3, (B6)

where χM is the susceptibility of M and is defined as
∂M
∂H4

|H2,H4→0. When the second-order phase transition occurs at
Ts , m = M = 0 for T > Ts and (K2m)λ−3 ∼ (1 − Ts/T ) and
M ∼ mλ−2 for T < Ts near Ts . Then we get (16).

Second, consider the susceptibility at the critical end point.
Since the transition is discontinuous at the critical end point,
the expansions with the assumption m,M 
 1 used in the
previous derivation is not applicable. Instead, we should keep
the explicit integral forms as follows. If we take the derivative
of (B1) with respect to H2 and take the limit H2,H4 → 0, we
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obtain

χm = A1 + A2K4(∂M/∂H2)|H2,H4→0

〈k〉[1 − (K2/〈k〉)A1]
, (B7)

where, with T2 ≡ tanh(K2mk) and T4 ≡ tanh(K4mk),

A1 = Nλ

∫ ∞

kmin

(
1 − T 2

2 T4
)
(1 + T4)(

1 + T 2
2 T4

)2
cosh2(K2mk)

k2−λdk (B8)

and

A2 = Nλ

∫ ∞

kmin

(
1 − T 2

2

)
T2(

1 + T 2
2 T4

)2
cosh2(K4Mk)

k2−λdk. (B9)

To evaluate Eq. (B7) we also should calculate
∂M/∂H2|H2,H4→0. If we take the derivative of (B2)

with respect to H2 and take the limit H2,H4 → 0, we obtain

∂M

∂H2

∣∣∣∣
H2,H4→0

= A4(χmK2 + 1)

〈k〉[1 − (K4/〈k〉)A3]
, (B10)

where

A3 = Nλ

∫ ∞

kmin

1 − T 4
2(

1 + T 2
2 T4

)2
cosh2(K4Mk)

k2−λdk (B11)

and

A4 = Nλ

∫ ∞

kmin

2T2
(
1 − T 2

4

)
(
1 + T 2

2 T4
)2

cosh2(K2mk)
k2−λdk. (B12)

At the critical end point, m = M = 0 for T > Ts , so A1 =
〈k2〉 and A2 = 0. Then χm becomes the same as the result
in Eq. (15) for the T > Ts case. For T < Ts , χm can be
numerically evaluated by solving Eqs. (B7) and (B10) together.
Through numerical evaluation, we found that the susceptibility
becomes finite for T < Ts .

[1] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and
S. Havlin, Nature (London) 464, 1025 (2010).

[2] M. E. J. Newman, Phys. Rev. E 66, 016128 (2002).
[3] R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86, 3200

(2001).
[4] K. Sznajd-Weron and J. Sznajd, Int. J. Mod. Phys. C 11, 1157

(2000).
[5] T. M. Liggett, Stochastic Interaction Systems: Contact, Voter

and Exclusion Processes (Springer, Berlin, 1999), p. 139.
[6] G. J. Baxter, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F.

Mendes, Phys. Rev. Lett. 109, 248701 (2012).
[7] M. Kivela, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno,

and M. A. Porter, J. Complex Networks 2, 203 (2014), and
references therein.

[8] S. Boccaletti, G. Bianconi, R. Criado, C. I. del Genio, J. Gmez-
Gardees, M. Romance, I. Sendia-Nadal, Z. Wang, and M. Zanin,
Phys. Rep. 544, 1 (2014).

[9] K.-M. Lee, B. Min, and K.-I. Goh, Eur. Phys. J. B 88, 48 (2015).
[10] A. Bar and D. Mukamel, Phys. Rev. Lett. 112, 015701 (2014).
[11] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys.

Rev. Lett. 96, 040601 (2006).
[12] P. M. Kogut and P. L. Leath, J. Phys. C 14, 3187 (1981).
[13] J. Adler, Physica A 171, 453 (1991).
[14] M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman,

J. Stat. Phys. 50, 1 (1988).

[15] B. C. Coutinho, A. V. Goltsev, S. N. Dorogovtsev, and J. F. F.
Mendes, Phys. Rev. E 87, 032106 (2013).

[16] W. A. Brock and S. N. Durlauf, in Handbook of Econometrics,
edited by J. J. Heckman and E. E. Leamer (Elsevier, Amsterdam,
2001), Vol. 5, Chap. 54, p. 3297.

[17] N. Masuda, Phys. Rev. E 90, 012802 (2014).
[18] M. Diakonova, M. San Miguel, and V. M. Eguı́luz, Phys. Rev. E

89, 062818 (2014).
[19] K. Suchecki and J. A. Hołyst, Phys. Rev. E 74, 011122

(2006).
[20] J. Ashkin and E. Teller, Phys. Rev. 64, 178 (1943).
[21] S. Bradde, F. Caccioli, L. Dall’Asta, and G. Bianconi, Phys. Rev.

Lett. 104, 218701 (2010).
[22] G. Bianconi, Phys. Rev. E 85, 061113 (2012).
[23] R. V. Ditzian, J. R. Banavar, G. S. Grest, and L. P. Kadanoff,

Phys. Rev. B 22, 2542 (1980).
[24] G. Bianconi, Phys. Lett. A 303, 166 (2002).
[25] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys.

Rev. E 66, 016104 (2002).
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