미시거시 2018-2학기 과제 1

due date: 2018.10.01 (Mon)

1. Determine the length of the row that is obtained when the atoms in a $1 \mathrm{~mm}^{3}$ grain of table salt are placed one next to the other.

Data

- Density of salt: $\mathrm{d}(\mathrm{NaCl})=2.165 \mathrm{~g} / \mathrm{cm}^{3}$
- Ionic radius of sodium: $\mathrm{r}(\mathrm{Na})=0.97 \AA=0.97 \times 10^{-10} \mathrm{~m}$
- Ionic radius of chlorine: $\mathrm{r}(\mathrm{Cl})=1.81 \AA=1.81 \times 10^{-10} \mathrm{~m}$
- Atomic weight of sodium: $\mathrm{M}(\mathrm{Na})=22.9898 \mathrm{~g}$
- Atomic weight of chlorine: $\mathrm{M}(\mathrm{Cl})=35.453 \mathrm{~g}$
- Avogadro's number: $\mathrm{N}_{A}=6.02252 \times 10^{23}$

2. Make an order-of-magnitude estimate for the average number of rubber molecules torn away from a shoe on each step.

Hints:

- For simplicity, let us assume the basic unit of the rubber molecule is cis-1,4 polymer, which consists of natural rubber. https://www.britannica.com/science/polyisoprene\#ref1049238
- First, measure the amount of shoe rubber worn out after some period. Justify why it is difficult to measure the change just after one step.
- Estimate how many steps you took during that period.
- Describe explicitly why and how you measure and estimate the quantities and what assumptions you made behind such estimates.

