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1.

Why the density fuctional theory?

e One-particle Schrodinger’s equation:

[_%vz’ 1 v(r)] Un(r) = nthn(r)

where the eigenstate can be represented by
M
Un(r) = Z Cn(@)Pa(r)
a=1

e N-particle Schrodinger’s equation:

EPAEOMIUES DM = r.|] T({r:) = Ba({r)
! i i
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where theN-particle state can be represented by
U, ({r;}) Z Cpn({ai}) (I){a ({r:})
{0‘1}

Note that®,,,, can be a state corresponding to the Slater determinz

Of {Pa, (ri) }-

e Suppose thaty, = 1, ..., M for the:-th particle residing at the inde-
pendent lattice site. Then, the total number of available states, }
becomesVY — NI

N!-dimensional space vs. 3d-functional space

NM « NM matrix vs. M x M matrix



Hohenberg-Kohn Theorem

e The exact many-body wavefunction (and all the ground state prop
ties) of the interacting many-body system is determined by the char
densityn(r)

e There exists a unique universal functional of the density,(r)|, in-
dependent of the external potentigt), such that

E, = /v(r)n(r)dr + F[n(r)]

has its minimum value at the correct ground-state energy associa
with v(r).

n(r) = (" ()9 ()| 0,) < [¥,)



Example: free electrons in a box with a constant potential v,

e Fermi Energysr = k%/2 + v,

e Fermi wave vectorky = \/2(cp — v,)
e Number density:
ki
n = —
372
1 3/2
n(r) = n(vo) = 5— (2(er — v))
e Total energy:
E, 3k% 3
V = 57n+von— 10(37T )2/3 5/3+U n

Note: Total energy E, is a function of n, which is in turn a function of v,.



Thomas-Fermi Theory

Description of Kinetic Energy for inhomogeneous systems as a func
tion of local densityn(r):

T — 130(37r 23 / in(r)]"/3dr



Example: interacting electrons in a box with a constant potential
v, =0

For a large density system, i.e.;> 1, the total energy of the interacting
electron gas can be expressed in a perturbation expansion of the paran

(1/kr) o< (1/n'7):
1
E = E,(1+ Ak + Bk:2 )
= T,— An*?+ B'n+C'In(n) +
e T, : kinetic energy
e E, = —A'n*/3 : exchange energy
e E.= B'n+ C"In(n) + ... : correlation energy

The form of the E,. exchange-correlation energy is known precisely only for the ho-

mogeneous interacting electron gas (jellium) system.



Comparison of Energy Contributions from Kinetic, Hartree, ...
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FIG. 4. Relative magnitudes of contributions to total valence
energy of Mn atom (in eV).



e Slater’s X-a Method

Jo 130(3772)2/3/[ (r))*/3dr — 2aC/ r)/2]/3dr

o For jellium, aC = 3(3/4r)/3.
o For the real system, « is adopted as an empirical parameter.
e Kohn-Sham Form of Exchange Energy

vs(n) = dn 3 213"

e Wigner Form of Exchange-Correlation Energy

—0.88
R
rs+ 7.8 y

Epe=E, + E,, with E.=

e Hedin-Lundqvist Form of E,.. RPA for jellium

e Ceperley-Alder Form parameterized by Perdew and Zunger:
Nearly Exact Quantum Monte Carlo Calculations on jellium



2.

Exchange-Correlation Energy

e The presence of an exchange-correlation hole, as discussed by
narsson and Lundqvist, is a key point as to why the local density a
proximation works so well.

e There is a sum rule on the hole in a metal.

e Only the spherical average is needed for the total energy.

11



Exchange-Correlation Hole

1
EC://—ng(rl,rQ)drldrg
1 — 13

Two particle density ng(ry,rs):

na(ri, T2) = %n(rl)n(rz)[l + g(r1,12)]

Pair correlation function: g(rj,rs)
Exchange-correlation hole:

Nze(T1,T9) = n(r2)g(r1, T2)

where there exists a sum rule:
/nmc(rl,rQ)drg = /n(rg)g(rl,rg)drz =—1
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e Hatree term:

1 1
Ey=— —_—
H =5 // i rQ‘n(rl)n(rg)drldrg

e Exchange-correlation term:

1 1
Eue == — ze(T1,T2)drd
2// |r1_r2|n(r1)n (r1,r9)dridry

T
- r'-r
Exact Q—r“l

1=
o
=3
S
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3. Kohn-Sham Equation

Finding “n(r)” for the ground state?

Applying the variational method for the minimuf}, [n] under the con-
traint [ n(r)dr = N:
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N-representability

Introducing a new set of extra variational “parameters”
{¢i(r)|i = 1,2,..., N} for the densityn(r):

n(r) = 3 [oi(r)

¢i(r) (t = 1,...,N) are the orbitals of fictitious (non-interacting
fermion) N-particles moving under the effective potential v.:

5V + @] ou) = ()
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With the number-of-particles constraint:
[ 16w =1
the total energy functional can be written by
E,n] = Tyn| + Egn] + E.cn] + /v(r)n(r)dr + Eion

1N

Tl = 3 3 (6l
Eygln] = %//%drdr'

Eyln] = / e reln]n(x)dr
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1 ;7 ;
Eion:_ —
2 %: R —R;|

Taking thevariation with respect tap;(r):

5
0¢7(r) |

Ve s(r

E[n el (/\@ 2dr—1)]

_——VZ e, >] 5i(r) = xr)

d xXc
/\r—r’\ '+ V(1)
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Local Density Approximation

Assuminge,.[n] = ..(n(r)),

d
U:L‘c<r> — m (ngxc(n(r)))

Ceperley-Alder Form
parameterized by Perdew and Zunger.
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Self-Consistent Calculation Algorithm

Choose a structure

Vion(r)

A

Initial guess of n(r)

Calculate Total Energy
Forces
etc

I Yes

A

Generate
Ver(r) = Vion+ Vi + Ve

A

No

Self-consistent?

I

Solve Kohn-Sham

New density

Equations

nr) =S; lj (NP
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4. Total Energy Calculations

N

Eiw = Zﬁi

1=1
1 1
—3 / n(ry)n(ry)dridry

r1 — 1y

—I—/n(r) [e2e(n) — vge(n)]dr
+Eion
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Reconstruction of W Surface

(a}

(b}

FIG. L. Atomic displacements for (a) M phonon with
displacements in the {110) direction (open circles indicate
bulklike positions); (b) M, phonon with alternaling vertical
displacements perpendicular 1o the surface.

(C.L. Fuetal., PRL54)
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5. Car-Parrinello Method

Lagrangian Formulation and lonic Forces

: 1 .
c=uy [l + 5 > MR - Bual {0 Ra)
subject to a set of constraints

(Piloj) =

Equations of motion:

. 5E0
:u T = 55: +ZA1j¢j

aE'tot

F;=MR; = — R,
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6. Excitation Properties

e Janak’s theorerrmeaning of,,x,
(corresponding to the Koopman'’s theorem in HF)

OF
anw

= €io

Excitation energyAE = A —IforS+ S — ST+ S5~
I =FEN)—EN-1)
A=FE(N+1)— E(N)
AE=FE(N+1)+E(N —1)—2F(N)
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7. Spin Density Functional Theory
In the presence dB(r), the basic variables become
{ny(r),n (r)}
n(r) = (Wo| (71 (r) + 7, (r)) [Wo)
m,(r) = (V| (71(r) — 7, (r)) [Wo)
Spin Density Functional £, [n, n|]:
E,nt,n|| = /v(r)n(r)dr + /b(r) -m(r)dr

+Ts[ny,ny] + Eg[n] + Eycng, ny
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Local Spin-Density Approximation

LSD Exchange Energy Functional:

Er*Png,n)] = 21/3033/ [(m)‘”’ + (nl)4/3} dr
= %Cx/n4/3 {(1 +OY3 (- C)4/3] dr

= /nex(n, ¢)dr

_nm=n
ny +n|
ex(n,¢) = €5(n) + [ez(n) — e2(n)] £(C)

= 5@ )T+ O (1 Y

£O =3
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Self-Interaction Correction

For N = 1 system withn = n,(r) with ¢ =7 or |, the Coulomb and
exchange energy must cancel each other:

EH[TLT] + Ex[TLT, O] =0

E.[n:,0] =0

To eliminate self-interaction in an approximate,,

Efcjc[n% ni] = Eplny,ny — Z (Erlnic] + Ez[niq, 0])

1o
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8. Electronic Structure Calculation Methods
e Tight Binding Basis: (Localized basis functions)

o Atomic-like orbitals
o General functions — Gaussians
o Wannier functions

¢ Plane wave basis:
unbiased basis function with a single cutoff parameter

wn(l‘) _ ZCn(G)ei(k+G)'r
G
e Augmented-plane-wave basis:

[ expi(k+G)-r
fe = { 2 vt Ut (77) Yim (£27)
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Phase Change of the Tight-binding wavefunctions
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Electronic Structure of Transition Metal Oxides
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FIG. 2. APW cnergy-band resuits for the 3d transition-metal oxides plotted along the o direction of the Brillouin

(L.F. Mattheiss, PRB5)



Full-potential vs. Pseudo-potential
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Logarithmic energy derivatives of radial functions
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Figure 3-10. Logarithmic derivatives as a function of energy. Solid
lines are for lead, and the dashed lines are for zero
Potential. .
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9. Examples

Tip of a Carbon Nanotube under External Electric Field: plane wave calculations (J. Ihm et al.]
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Change of Electron Density due to the Carbon Impurity in the Fe Interface and Surface: FLAF
calculation (S.C. Hong et al.)

10 R
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Various Oxygen Vacancy Structure inside gi@alculated by the real-space multi-grid method.
(K.J. Chang et al.)

Dimer configuration

N
Si-8i
bhonding

Puckered configuration
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