Local Density Functional Theory: Basics and its Applications

Jaejun Yu

Center for Strongly Correlated Materials Research and School of Physics Seoul National University

Contents

1	Why the density fuctional theory?	3
2	Exchange-Correlation Energy	11
3	Kohn-Sham Equation	15
4	Total Energy Calculations	21
5	Car-Parrinello Method	23
6	Excitation Properties	24
7	Spin Density Functional Theory	25
8	Electronic Structure Calculation Methods	28
9	Examples	33

- 1. Why the density fuctional theory?
 - One-particle Schrodinger's equation:

$$\left[-\frac{1}{2}\nabla^2 + v(\mathbf{r})\right]\psi_n(\mathbf{r}) = \varepsilon_n\psi_n(\mathbf{r})$$

where the eigenstate can be represented by

$$\psi_n(\mathbf{r}) = \sum_{\alpha=1}^M c_n(\alpha)\phi_\alpha(\mathbf{r})$$

• *N*-particle Schrodinger's equation:

$$\left[-\frac{1}{2}\sum_{i}\nabla_{i}^{2}+\sum_{i}v(\mathbf{r_{i}})+\frac{1}{2}\sum_{i\neq j}\frac{1}{|\mathbf{r}_{i}-\mathbf{r}_{j}|}\right]\Psi_{n}(\{\mathbf{r}_{i}\})=E_{n}\Psi_{n}(\{\mathbf{r}_{i}\})$$

where the N-particle state can be represented by

$$\Psi_n(\{\mathbf{r}_i\}) = \sum_{\{\alpha_i\}} C_n(\{\alpha_i\}) \Phi_{\{\alpha_i\}}(\{\mathbf{r}_i\})$$

Note that $\Phi_{\{\alpha_i\}}$ can be a state corresponding to the Slater determinant of $\{\phi_{\alpha_i}(\mathbf{r}_i)\}$.

Suppose that α_i = 1, ..., M for the *i*-th particle residing at the independent lattice site. Then, the total number of available states {Φ_{α_i}} becomes N^M → N!.

N!-dimensional space vs. 3d-functional space

 $N^M \times N^M$ matrix vs. $M \times M$ matrix

Hohenberg-Kohn Theorem

- The exact many-body wavefunction (and all the ground state properties) of the interacting many-body system is determined by the charge density $n(\mathbf{r})$
- There exists a unique universal functional of the density, $F[n(\mathbf{r})]$, independent of the external potential $v(\mathbf{r})$, such that

$$E_v = \int v(\mathbf{r})n(\mathbf{r})d\mathbf{r} + F[n(\mathbf{r})]$$

has its minimum value at the correct ground-state energy associated with $v(\mathbf{r})$.

$$n(\mathbf{r}) = \langle \Psi_o | \hat{\psi}^+(\mathbf{r}) \hat{\psi}(\mathbf{r}) | \Psi_o \rangle \Leftrightarrow | \Psi_o \rangle$$

Example: free electrons in a box with a constant potential v_o

- Fermi Energy: $\varepsilon_F = k_F^2/2 + v_o$
- Fermi wave vector: $k_F = \sqrt{2(\varepsilon_F v_o)}$
- Number density:

$$n = \frac{k_F^3}{3\pi^2}$$
$$n(\mathbf{r}) = n(v_o) = \frac{1}{3\pi^2} \left(2(\varepsilon_F - v_o)\right)^{3/2}$$

• Total energy:

$$\frac{E_o}{V} = \frac{3}{5} \frac{k_F^2}{2} n + v_o n = \frac{3}{10} (3\pi^2)^{2/3} n^{5/3} + v_o n$$

Note: Total energy E_o is a function of n, which is in turn a function of v_o .

Thomas-Fermi Theory

Description of Kinetic Energy for inhomogeneous systems as a function of local density $n(\mathbf{r})$:

$$T = \frac{3}{10} (3\pi^2)^{2/3} \int [n(\mathbf{r})]^{5/3} d\mathbf{r}$$

Example: interacting electrons in a box with a constant potential $v_o = 0$

For a large density system, i.e., $n \gg 1$, the total energy of the interacting electron gas can be expressed in a perturbation expansion of the parameter $(1/k_F) \propto (1/n^{1/3})$:

$$E = E_o(1 + A\frac{1}{k_F} + B\frac{1}{k_F^2} + ...)$$

= $T_o - A'n^{4/3} + B'n + C'\ln(n) +$

- T_o : kinetic energy
- $E_x = -A'n^{4/3}$: exchange energy
- $E_c = B'n + C' \ln(n) + \dots$: correlation energy

The form of the E_{xc} exchange-correlation energy is known precisely only for the homogeneous interacting electron gas (jellium) system.

Comparison of Energy Contributions from Kinetic, Hartree, ...

FIG. 4. Relative magnitudes of contributions to total valence energy of Mn atom (in eV).

• Slater's X- α Method

$$E = \frac{3}{10} (3\pi^2)^{2/3} \int [n(\mathbf{r})]^{5/3} d\mathbf{r} - 2\alpha C \int [n(\mathbf{r})/2]^{4/3} d\mathbf{r}$$

- For jellium, $\alpha C = 3(3/4\pi)^{1/3}$.
- $\circ~$ For the real system, α is adopted as an empirical parameter.
- Kohn-Sham Form of Exchange Energy

$$v_x(n) = \frac{dE_{xc}(n)}{dn} = \frac{4}{3}C\frac{1}{2^{1/3}}n^{1/3}$$

Wigner Form of Exchange-Correlation Energy

$$E_{xc} = E_x + E_c$$
, with $E_c = \frac{-0.88}{r_s + 7.8}$ Ryd

- Hedin-Lundqvist Form of E_{xc} : RPA for jellium
- Ceperley-Alder Form parameterized by Perdew and Zunger: Nearly Exact Quantum Monte Carlo Calculations on jellium

2. Exchange-Correlation Energy

- The presence of an exchange-correlation hole, as discussed by Gnnarsson and Lundqvist, is a key point as to why the local density approximation works so well.
- There is a sum rule on the hole in a metal.
- Only the spherical average is needed for the total energy.

Exchange-Correlation Hole

$$E_C = \int \int \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} n_2(\mathbf{r}_1, \mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$$

Two particle density $n_2(\mathbf{r}_1, \mathbf{r}_2)$:

$$n_2(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{2}n(\mathbf{r}_1)n(\mathbf{r}_2)[1 + g(\mathbf{r}_1, \mathbf{r}_2)]$$

Pair correlation function: $g(\mathbf{r}_1, \mathbf{r}_2)$ **Exchange-correlation hole:**

$$n_{xc}(\mathbf{r}_1, \mathbf{r}_2) = n(\mathbf{r}_2)g(\mathbf{r}_1, \mathbf{r}_2)$$

where there exists a sum rule:

$$\int n_{xc}(\mathbf{r}_1, \mathbf{r}_2) d\mathbf{r}_2 = \int n(\mathbf{r}_2) g(\mathbf{r}_1, \mathbf{r}_2) d\mathbf{r}_2 = -1$$

• Hatree term:

$$E_H = \frac{1}{2} \int \int \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} n(\mathbf{r}_1) n(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$$

• Exchange-correlation term:

$$E_{xc} = \frac{1}{2} \int \int \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} n(\mathbf{r}_1) n_{xc}(\mathbf{r}_1, \mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$$

Exchage-Correlation Holes in Si

3. Kohn-Sham Equation

Finding " $n(\mathbf{r})$ " for the ground state?

Applying the variational method for the minimum $E_v[n]$ under the contraint $\int n(\mathbf{r}) d\mathbf{r} = N$:

$$\frac{\delta}{\delta n(\mathbf{r})} \left[E_v - \mu \left(\int n(\mathbf{r}) d\mathbf{r} - N \right) \right] = 0$$
$$\frac{\delta F[n(\mathbf{r})]}{\delta n(\mathbf{r})} + v(\mathbf{r}) = \mu$$

N-representability

Introducing a new set of extra variational "parameters" $\{\phi_i(\mathbf{r})|i=1,2,...,N\}$ for the density $n(\mathbf{r})$:

$$n(\mathbf{r}) = \sum_{i=1}^{N} |\phi_i(\mathbf{r})|^2$$

 $\phi_i(\mathbf{r})$ (i = 1, ..., N) are the orbitals of **fictitious** (non-interacting fermion) *N*-particles moving under the **effective** potential v_{eff} :

$$\left[-\frac{1}{2}\nabla^2 + v_{eff}(\mathbf{r})\right]\phi_i(\mathbf{r}) = \epsilon_i\phi_i(\mathbf{r})$$

With the number-of-particles constraint:

$$\int |\phi_i(\mathbf{r})|^2 d\mathbf{r} = 1$$

the total energy functional can be written by

$$E_v[n] = T_s[n] + E_H[n] + E_{xc}[n] + \int v(\mathbf{r})n(\mathbf{r})d\mathbf{r} + E_{ion}$$

$$T_s[n] = -rac{1}{2} \sum_{i=1}^N \langle \phi_i |
abla^2 | \phi_i
angle$$
 $E_H[n] = rac{1}{2} \int \int rac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}'$ $E_{xc}[n] = \int arepsilon_{xc}[n]n(\mathbf{r})d\mathbf{r}$

$$E_{ion} = \frac{1}{2} \sum_{ij} \frac{Z_i Z_j}{|\mathbf{R}_i - \mathbf{R}_j|}$$

Taking the **variation** with respect to $\phi_i(\mathbf{r})$:

$$\frac{\delta}{\delta\phi_i^*(\mathbf{r})} \left[E_v[n] - \sum_{i=1}^N \epsilon_i \left(\int |\phi_i(\mathbf{r})|^2 d\mathbf{r} - 1 \right) \right] = 0$$
$$\left[-\frac{1}{2} \nabla^2 + v_{eff}(\mathbf{r}) \right] \phi_i(\mathbf{r}) = \epsilon_i \phi_i(\mathbf{r})$$
$$v_{eff}(\mathbf{r}) = v(\mathbf{r}) + \int \frac{n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r}' + v_{xc}(\mathbf{r})$$

Local Density Approximation

Assuming
$$\varepsilon_{xc}[n] = \varepsilon_{xc}(n(\mathbf{r}))$$
,
 $v_{xc}(\mathbf{r}) = \frac{d}{dn(\mathbf{r})} (n\varepsilon_{xc}(n(\mathbf{r})))$

The *n*-dependence of ε_{xc} can be obtained as accurately as possible via Quantum Monte Carlo Calculations of Ceperley-Alder Form parameterized by Perdew and Zunger.

Self-Consistent Calculation Algorithm

4. Total Energy Calculations

$$E_{tot} = \sum_{i=1}^{N} \epsilon_i$$

- $\frac{1}{2} \int \int \frac{1}{|\mathbf{r}_1 - \mathbf{r}_2|} n(\mathbf{r}_1) n(\mathbf{r}_2) d\mathbf{r}_1 d\mathbf{r}_2$
+ $\int n(\mathbf{r}) [\varepsilon_{xc}(n) - v_{xc}(n)] d\mathbf{r}$
+ E_{ion}

Reconstruction of W Surface

Also i. Atomic displacements for (a) M_5 phonon with displacements in the (110) direction (open circles indicate bulklike positions); (b) M_1 phonon with alternating vertical displacements perpendicular to the surface.

0.0 0.1 0.2 DISPLACEMENT & (Å)

0.3

(C.L. Fu et al., PRL54)

5. Car-Parrinello Method

Lagrangian Formulation and Ionic Forces

$$\mathcal{L} = \mu \sum_{i} \int d\mathbf{r} |\dot{\phi}_{i}(\mathbf{r})|^{2} + \frac{1}{2} \sum_{I} M_{I} \dot{\mathbf{R}}_{I}^{2} - E_{tot}(\{\phi_{i}, \mathbf{R}_{I}\})$$

subject to a set of constraints

$$\langle \phi_i | \phi_j \rangle = \delta_{ij}$$

Equations of motion:

$$\mu \ddot{\phi}_i = -\frac{\delta E_{tot}}{\delta \phi_i^*} + \sum_j \Lambda_{ij} \phi_j$$
$$\mathbf{F}_I = M_I \ddot{\mathbf{R}}_I = -\frac{\partial E_{tot}}{\partial \mathbf{R}_I}$$

6. Excitation Properties

• Janak's theorem: meaning of $\epsilon_{nk\sigma}$ (corresponding to the Koopman's theorem in HF)

$$\frac{\partial E}{\partial n_{i\sigma}} = \epsilon_{i\sigma}$$

• Ionization Energy vs. Electron Affinity:

Excitation energy: $\Delta E = A - I$ for $S + S \rightarrow S^+ + S^-$

$$I = E(N) - E(N - 1)$$
$$A = E(N + 1) - E(N)$$
$$\Delta E = E(N + 1) + E(N - 1) - 2E(N)$$

7. Spin Density Functional Theory

In the presence of $\mathbf{B}(\mathbf{r})$, the basic variables become

 $\{n_{\uparrow}(\mathbf{r}), n_{\downarrow}(\mathbf{r})\}$

$$\begin{split} n(\mathbf{r}) &= \left\langle \Psi_o \right| \left(\hat{n}_{\uparrow}(\mathbf{r}) + \hat{n}_{\downarrow}(\mathbf{r}) \right) \left| \Psi_o \right\rangle \\ \mathbf{m}_z(\mathbf{r}) &= \left\langle \Psi_o \right| \left(\hat{n}_{\uparrow}(\mathbf{r}) - \hat{n}_{\downarrow}(\mathbf{r}) \right) \left| \Psi_o \right\rangle \end{split}$$

Spin Density Functional $E_v[n_{\uparrow}, n_{\downarrow}]$:

$$E_{v}[n_{\uparrow}, n_{\downarrow}] = \int v(\mathbf{r})n(\mathbf{r})d\mathbf{r} + \int \mathbf{b}(\mathbf{r}) \cdot \mathbf{m}(\mathbf{r})d\mathbf{r} + T_{s}[n_{\uparrow}, n_{\downarrow}] + E_{H}[n] + E_{xc}[n_{\uparrow}, n_{\downarrow}]$$

Local Spin-Density Approximation

LSD Exchange Energy Functional:

$$\begin{split} E_x^{LSD}[n_{\uparrow}, n_{\downarrow}] &= 2^{1/3} C_x \int \left[(n_{\uparrow})^{4/3} + (n_{\downarrow})^{4/3} \right] d\mathbf{r} \\ &= \frac{1}{2} C_x \int n^{4/3} \left[(1+\zeta)^{4/3} + (1-\zeta)^{4/3} \right] d\mathbf{r} \\ &= \int n \varepsilon_x(n, \zeta) d\mathbf{r} \\ &\zeta = \frac{n_{\uparrow} - n_{\downarrow}}{n_{\uparrow} + n_{\downarrow}} \\ \varepsilon_x(n, \zeta) &= \varepsilon_x^o(n) + [\varepsilon_x^1(n) - \varepsilon_x^o(n)] f(\zeta) \\ &f(\zeta) &= \frac{1}{2} (2^{1/3} - 1)^{-1} [(1+\zeta)^{4/3} + (1-\zeta)^{4/3} - 2] \end{split}$$

Self-Interaction Correction

For N = 1 system with $n = n_{\sigma}(\mathbf{r})$ with $\sigma = \uparrow$ or \downarrow , the Coulomb and exchange energy must cancel each other:

 $E_H[n_{\uparrow}] + E_x[n_{\uparrow}, 0] = 0$ $E_c[n_{\uparrow}, 0] = 0$

To eliminate self-interaction in an approximate \bar{E}_{xc} ,

$$E_{xc}^{SIC}[n_{\uparrow}, n_{\downarrow}] = \bar{E}_{xc}[n_{\uparrow}, n_{\downarrow}] - \sum_{i\sigma} \left(E_H[n_{i\sigma}] + E_x[n_{i\sigma}, 0] \right)$$

8. Electronic Structure Calculation Methods

- Tight Binding Basis: (Localized basis functions)
 - Atomic-like orbitals
 - General functions Gaussians
 - Wannier functions
- Plane wave basis:

unbiased basis function with a single cutoff parameter

$$\psi_n(\mathbf{r}) = \sum_{\mathbf{G}} c_n(\mathbf{G}) e^{i(\mathbf{k} + \mathbf{G}) \cdot \mathbf{r}}$$

• Augmented-plane-wave basis:

$$\phi_{\mathbf{G}} = \begin{cases} \exp i(\mathbf{k} + \mathbf{G}) \cdot \mathbf{r} \\ \sum_{\tau lm} u_{\tau l}(r_{\tau}) Y_{lm}(\Omega_{\tau}) \end{cases}$$

Phase Change of the Tight-binding wavefunctions

Electronic Structure of Transition Metal Oxides

(L.F. Mattheiss, PRB5)

Full-potential vs. Pseudo-potential

Logarithmic energy derivatives of radial functions

9. Examples

Tip of a Carbon Nanotube under External Electric Field: plane wave calculations (J. Ihm et al.)

Change of Electron Density due to the Carbon Impurity in the Fe Interface and Surface: FLAPW calculation (S.C. Hong et al.)

Various Oxygen Vacancy Structure inside SiO₂: calculated by the real-space multi-grid method. (K.J. Chang et al.)

