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Randall-Sundrum Model for Self-Tuning the Cosmological Constant
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The vanishing cosmological constant in the four-dimensional space-time is obtained in a 5D Randall-
Sundrum model with a brane (B1) located at y � 0. The matter fields can be located at the brane. For
settling any vacuum energy generated at the brane to zero, we need a three-index antisymmetric tensor
field AMNP with a specific form for the Lagrangian. For the self-tuning mechanism, the bulk cosmological
constant should be negative.
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The cosmological constant problem is the most serious
hierarchy problem and has been known for more than two
decades [1]. So far, there have been several attempts [2]
toward understanding this hierarchy problem, but there has
not yet appeared a fully accepted solution. The hierar-
chy in this problem is, “Why is the scale for the cosmo-
logical constant L so small compared to the Planck mass
scale MP � 2.44 3 1018 GeV?” This hierarchy problem
has become even more difficult with the recent obser-
vation of the small but nonvanishing vacuum energy of
order �0.003 eV�4 [3]. The quintessences have been con-
sidered in order to explain the smallness of this tiny vac-
uum energy [4], but the bottom line of these ideas is that
there does exist a solution to the cosmological constant
problem.

The cosmological constant was introduced by Einstein
in 1917 to make the universe static, since it appeared at
that time that the universe did not seem to be not evolv-
ing. But the discovery of the expanding universe in 1929
no longer required the assumption of a static universe, and
the cosmological constant has become another parameter
to be determined by further observations in general relativ-
ity. We expect that if a theory describes physics at the mass
scale of order m, parameters in the theory are expected
to be of order m. Gravitation is described at the Planck
scale (or inverse Newton’s constant) of order 1019 GeV.
However, the cosmological constant appearing in the grav-
ity equation is phenomenologically very strongly bounded
,�0.01 eV�4, which implies that there is a hierarchy of or-
der 102120 between parameters in the gravity theory. This
hierarchy problem could have been questioned even at the
time of Einstein, not from the static universe condition but
as a hierarchy problem.

In theoretical physics, the cosmological constant prob-
lem has become a serious one in view of the need for
spontaneous symmetry breaking (SSB) in particle physics
[1], since the vacuum energy (which is another name for
cosmological constant) in SSB is not fixed by any sym-
metry principle. The electroweak symmetry breaking and
QCD chiral symmetry breaking can introduce vacuum en-
ergies. Thus, the difficulty of solving the cosmological
constant problem in four-dimensional (4D) space-time lies
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in the fact that the limit L ! 0 does not introduce any
new symmetry. Thus, it may be necessary to go beyond
the 4D space-time or introduce a more general form of the
Lagrangian.

In this Letter, we consider a solution of the cosmological
constant problem with one extra dimension. In particular,
we work with one brane located at y � 0 (B1 brane),
where y is the fifth dimension (5D), which is the so-called
Randall-Sundrum-II model (RSII) [5]. This RSII model is
an alternative to compactification of the extra dimension
y, but we can obtain an effective 4D flat theory if gravity
is localized at the B1 brane. If we stay at B1 and the
graviton wave function is sufficiently damped at large y,
the bulk of this extra y space is not of much relevance to
us even though the 5D space is not compactified. Within
this type of setup there may exist a possibility to attack
the cosmological constant problem again, since the 4D
flat space solutions are obtained with fine tuning(s) even
though the 5D cosmological constant is nonvanishing and
negative. (Note that in 4D there is no possibility of a flat
space solution if the cosmological constant is nonzero.)

In the RS-type models, the idea for self-tuning of the
cosmological constant has already been suggested [6]. We
define the self-tuning model as a model allowing a flat
space solution without fine-tuning between parameters in
the Lagrangian. This definition is consistent with the
one adopted by Hawking and Witten in the early 1980s
[7,8]. They did not care about the existence of de Sitter
or anti–de Sitter space solutions, but needed the existence
of a flat space solution with one undetermined integration
constant. This constant can be used to adjust so that the
cosmological constant becomes zero, given the parame-
ters in the Lagrangian. But in 4D space-time their’s was
just an idea, not a working model, since their 3-form field
was not a dynamical field. In recent papers [6], the self-
tuning idea has been revived in five-dimensional space-
time. Arkani-Hamed et al. and Kachru et al. [6] used a
specific potential for a bulk scalar field in the RSII model
[5] and obtained a flat space solution for a finite range of
input parameters in the Lagrangian. Thus, it seemed that
they realized the self-tuning idea. However, their solution
contained an essential singularity, where they just cut off
© 2001 The American Physical Society 4223
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the bulk for a finite 4D Planck mass. But one cannot ig-
nore this singularity. If we ignore it, we would not obtain
a vanishing effective cosmological constant in an effective
4D theory, which is contradictory to the flat space solution.
If the cure for this singularity is correctly performed, the
effective 4D cosmological constant is zero but one needs
one fine-tuning [9]. Therefore, it is fair to say that the idea
for the self-tuning has been suggested in the RS-type mod-
els but thus far a successful model has not appeared.

In this Letter, we present a working self-tuning model
with a 1�H2 term in the Lagrangian in the 5D RSII model
4224
[5]. The basic mechanism of our solution is the following.
The solution with a 4D flat space ansatz is regular at the
whole y space and introduces two integration constants
a and c. One constant a defines the Planck scale. The
other integration constant c participates in the boundary
condition at B1 and is related to the brane tension and bulk
cosmological constant. (Note that, in the RSII model, there
appears one integration constant which is not participating
in the boundary condition.)

We proceed to discuss the model with the action
S �
Z

d4x
Z

dy
p

2g

µ
1
2

R 1
2 3 4!

HMNPQHMNPQ 2 Lb 1 Lmd�y�

!
, (1)
where we put the brane B1 at y � 0 and the brane ten-
sion at B1 is L1 � 2�Lm� . We set the fundamental mass
parameter M as 1 and we recover the mass M wherever
it is explicitly needed. We assume a Z2 symmetry of the
solution, b�2y� � b�y�. We introduced the three-index
antisymmetric tensor field AMNP whose field strength is
denoted as HMNPQ. The action contains the 1�H2 term
which does not make sense if H2 does not develop a vac-
uum expectation value. We anticipate that this term con-
stitutes part of the gravitational interactions, and hence
the renormalizability is not considered in this paper. If a
good solution results for the cosmological constant prob-
lem, it can be more seriously considered as a fundamental
interaction.

The ansatz for the metric is taken as [10]

ds2 � b2�y�hmndxmdxn 1 dy2, (2)

where �hmn� � diag�21, 11, 11, 11�. With the brane
tension L1 at B1 and the bulk cosmological constant Lb ,
the energy momentum tensors are

TMN � 2gMNLb 2 gmnd
m
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(3)

HMNPQ was considered previously in connection with
the cosmological constant problem [8] and compactifica-
tion [11]. The specific form for H2 � HMNPQHMNPQ

in Eq. (1) makes sense only if H2 develops a vacuum
expectation value at the order of the fundamental mass
scale. Because of the gauge invariant four-index HMNPQ,
four space-time is singled out from the five dimensions
[11]. The ansatz for the four form fields is Hmnrs �
p

2g emnrs�n�y�, where m, · · · run over the Minkowski
indices 0, 1, 2, and 3. In 5D space, the three-index anti-
symmetric tensor field is basically a scalar field a defined
by ≠Ma � �1�4!�p2g eMNPQRHNPQR.
In this Letter, we show that there exists a solution for
Lb , 0. The two relevant Einstein equations are the (55)
and �mm� components,

6

µ
b0

b

∂2

� 2Lb 2
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A
, (4)
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� 2Lb 2 L1d�y� 2 3

b8

A
, (5)

where the prime denotes the derivative with respect to
y, and A is a positive constant in view of the ansatz of
Hmnrs . It is easy to check that Eq. (5) in the bulk is ob-
tained from Eq. (4) for any Lb , L1, and A. If we took H2

(instead of the 1�H2 term) in the Lagrangian, this state-
ment will still hold but the resulting solutions do not lead
to a self-tuning solution [12]. If we use both 1�H2 and
H2 terms, a self-tuning solution does not result. Near B1
(the y � 0 brane), the d function must be generated by
the second derivative of b. The Z2 symmetry, b�2y� �
b�y�, implies �d�dy�b�y�j01 � 2�d�dy�b�y�j02 . Thus,
we can write �d2�dy2�b�jyj� as �d2�dy2�b�jyj�jyfi0 1

2d�y��d�djyj�b�jyj�. This d-function condition at B1
leads to a boundary condition

b0

b

Ç
y�01

� 2k1 , (6)

where we define k’s in terms of the bulk cosmological
constant and the brane tension,

k �

s
2

Lb

6
, k1 �

L1

6
. (7)

It is sufficient if we find a solution for the bulk equation
[Eq. (4)] with the boundary condition [Eq. (6)]. We define
a in terms of A,

a �

s
1

6A
. (8)

We note that the solution b�y� should satisfy the follow-
ing: (i) the metric is well behaved in the whole region of
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the bulk, and (ii) the resulting 4D effective Planck mass is
finite.

The solution of Eq. (4), consistent with the Z2 symme-
try, is

b�jyj� �

µ
k
a

∂1�4

�cosh�4kjyj 1 c��21�4, (9)

where c is an integration constant to be determined by
the boundary condition [Eq. (6)]. This solution, consistent
with (i), is possible for a finite range of the brane tension
L1. Note that c can take any sign. This solution gives a
localized gravity consistent with the above condition (ii).
The boundary condition (6) determines c in terms of Lb

and L1,

c � tanh21

µ
k1

k

∂
� tanh21

µ
L1p

26Lb

∂
. (10)

We note that the solution exists for a finite range of parame-
ters, 2

p
26Lb , L1 ,

p
26Lb .

The effective 4D Planck mass is finite:
M2
P,eff � 2M3

µ
k
a

∂1�2 Z `

0
dy

1p
cosh�4ky 1 c�

. (11)

Note that the Planck mass is given in terms of the inte-
gration constant a, or the integration constant is expressed
in terms of the fundamental mass M and the 4D Planck
mass MP,eff,

a �

µ
M3

M2
P,eff

p
2k

F

∂2

, (12)

where F is an elliptic integral of the first kind and is known
to be finite [12].

To obtain the field equation for AMNP, we note that the
variation of the Lagrangian (1) with respect to ANPQ gives

dL . 24 3 4! ≠M

µ
p

2g
HMNPQdANPQ

H4

∂

1 4 3 4!

∑
≠M

µ
p

2g
HMNPQ

H4

∂∏
dANPQ . (13)

To cancel the first term of the above equation, we add a
surface term in the action
Ssurface �
Z

d4xdy 4 3 4! ≠M
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�
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d4xdy 4 3 4!
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∂∏
, (14)
where the variation of the derivative of ANPQ vanishes at
the boundary [13]. Then the field equation for ANPQ is

≠M

p
2g HMNPQ

H4 � 0 , (15)

which can be integrated to give
p

2g HMNPQ

H4 � function of y only . (16)

Because of our ansatz for the 4D homogeneous space,
HMNPQ can have nonvanishing values only for Hmnrs , as
discussed earlier. Thus, A in Eqs. (4) and (5), and hence
a in Eq. (8), is an integration constant. Field equations do
not determine a, namely, a is not dynamically determined.
However, a can take any value. Then, for a given a, the
Planck mass is given in terms of a, as shown in Eq. (11).
It is clear that this integration constant a itself does not
participate in the self-tuning. On the other hand, the inte-
gration constant c does participate in the self-tuning.

Suppose that we are given a Lagrangian with L1 and Lb .
We can then always find a solution for Lb , 0 and jL1j ,p

26Lb . Namely, there exists a 4D flat space solution (2)
with c given by Eq. (10). If we add some constant vacuum
energy at B1, then L1 is shifted to, say, L

0
1. For this new

set of L
0
1 and Lb , we can again find a solution, but with

a different integration constant c0 given with L
0
1 through

Eq. (10). In other words, the dynamics of gravity and the
antisymmetric tensor field adjust the solutions a little, i.e.,
self-tune the above integration constant from c to c0, to
satisfy the field equations.

Even though we obtained a flat space solution for the
4D Minkowski space, it is worthwhile to check explicitly
that the effective cosmological constant vanishes. From
action (1), the 4D gravity with vacuum energy is effectively
described by
S �
Z

d4xdy
p

2h b4

∑
1
2

b22R̃4 2 4
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b00
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2 6

µ
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2 3 4!

H2 2 L1d�y�
∏

1 Ssurface , (17)

where the 4D metric is g̃mn � b2hmn , h is the determinant of hmn , and R̃4 is the 4D Ricci scalar. Then 2Leff is given
by the y integral of Eq. (17), except the R̃4 term,

Leff �
Z `
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∏
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Using Eqs. (4) and (5), we can rewrite Leff as

Leff � L
�1�
eff 1 L

�2�
eff , (19)

where

L
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1
3
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b4,

L
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8
3A

Z `

0
dy b12.

(20)

Using solution (9), and conditions (7), (8), and (10), we
can show that

L
�1�
eff � 22

kk1

a
1
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1

∑
2

k2

a
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0
,

L
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a
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∑
2
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a
tan21 sinh�4ky 1 c�
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0
,

(21)

which leads to L
�1�
eff 1 L

�2�
eff � 0, in agreement with the flat

4D metric [Eq. (2)].
So far we have presented a model for a simple

Lagrangian with a 1�H2 term only. However, we can
show that more general Lagrangians containing only nega-
tive powers of H2 can have the self-tuning solutions. If the
Lagrangian contains

P
n�an���H2��n� with a1 . 0 and

larger for the 1��H2� dominance, the last terms of the (55)
and �mm� Einstein equations, (4) and (5), are changed to

2
X
n

Cn�b�
An

, 2
X
n

�2n 1 1�Cn�b�
An

, (22)

respectively, with A1 . 0. Then, by checking the two
equations, we obtain Cn�b� � b8n for consistency. The
(55) equation then gives

jb0j �

s
2

Lb

6
b2 2

X
n

b8n12

6An
. (23)

Equation (23) gives b0 ! 0 as b ! 0 if n $ 0, which
guarantees the existence of the solution. But, for n , 0,
there exists a naked singularity and there is no solution.
Suppose that 1��H2� is given and other corrections are
powers of H2. Then, these small corrections in �H2�m

�m . 0� can be brought approximately into the formP
n$0 an���H2� 1 H2�n, where the n � 1 term is domi-

nant. Thus, if the corrections contain only the �H2�n-type
terms, the existence of the self-tuning solution is intact.

Before concluding, we must point out that the self-
tuning solution [Eq. (9)] is stable in the sense that the
4226
metric perturbation around the solution does not lead to
tachyons [12].

In conclusion, we obtained a solution for self-tuning
of the cosmological constant in 5D theory with the Z2
symmetry. For the self-tuning solution to exist, the bulk
cosmological constant must be negative, Lb , 0, and we
need a specific form for the gravitational interaction of the
three-index antisymmetric tensor field AMNP.
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