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We construct several N=1 supersymmetric three-generation models with SU(3) X SU(2) xU(1)" gauge symmetry, obtained
from orbifold compactification of the heterotic string in the presence of constant gauge-background fields. This Wilson-line mech-
anism also allows us to eliminate extra colour triplets which could mediate fast proton decay.

1. Introduction. Recent studies of four-dimen-
sional string theories [ 1-4] have led to a generalized
impression that, starting from heterotic strings, it is
possible to obtain almost any four-dimensional model
we want. However, phenomenologically interesting
models have not yet emerged from the different
analyses of consistent string theories in four dimen-
sions. Even though chiral supersymmetric models are
easily obtained, the gauge group and/or the number
of generations generally appears to be unrealistic.

Recently, a mechanism was found [ 3] with which
it is possible to reduce the number of generations and
at the same time break the gauge group in orbifold
compactification of the heterotic string. This was
done through the consideration of Wilson lines, i.e.
constant gauge-background fields corresponding to
the non-contractible loops of the torus underlying the
orbifold. In the present note, we use the above mech-
anism to construct three-generation models with the
gauge symmetry SU(3) xSU(2) xU(1)". Our aim
is — more than stressing the phenomenological vir-
tues of the models - to illustrate how the existence
of Wilson lines allows us to have good control over
the types of models we have, in such a way that we
can select the “interesting ones” by appropriate
choices of the Wison lines and the different embed-
dings of the point group of the orbifold in the gauge
group. Using this mechanism, we can eliminate extra
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colour triplets and thus avoid the risk of them induc-
ing fast proton decay.

2. Orbifolds and Wilson lines. For definiteness, we
will restrict our discussion to the Z orbifold, which
is the six-torus defined by the [SU(3)]? lattice,
modded out by the discrete group P=Z,. This group
acts as 2n/3 rotations of the lattice vectors. The Z
orbifold has 27 (fixed) points which are invariant,
up to a lattice vector, under the action of P. The
translations on the lattice e;, together with the dis-
crete rotations 8 on P, form the space group S. The
action of S can be extended to the gauge degrees of
freedom, where both the discrete rotations and
translations in the space-time lattice are represented
by shifts in the Eg X E; lattice. To a discrete rotation
@ we assign a shift 2/ (I=1, ..., 16), and to a trans-
lation by e# (i=1, ..., 6) we assign the shifts a! cor-
responding to the Wilson lines [, 4 dx*=
2nA} e =2nal. These shifts cannot be chosen arbi-
trarily. The fact that P is of order 3 implies that 3¢/
is a lattice vector; this, together with the group law
on S, implies that 3a! is also a lattice vector. Also,
since a rotation by 6 relates two SU(3) lattice vec-
tors, we have

all'=all'+1: i:1’3’5' (1)

Therefore, there are only three independent Wilson
lines. Modular invariance also imposes restrictions
on the choices of v/ and a/, as we will see later.
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The Hilbert space of the string in an orbifold splits
into two types of sectors: twisted and untwisted. The
untwisted sector corresponds to the string closed in
the original torus. The mass formula in this sector is
that of the original Eg X E; string,

4mR—4 =3P +N. -1, (2)

where p/ (I=1, ..., 16) are the momenta in the Eg < E;
lattice, and N, is the left-movers number operator.
The massless states are given by the Eg X Egz roots
[(p")?=2] projected onto those which are Wilson-line
singlets, i.e. [5]

plal=n;, neZ. (3)

These roots are split into three groups, according to
how they transform under e2*#"*, The invariant states

plvi=m, meZ, (4)

combine with the right-movers |i>r and [adgr (i,
a=1, .., 8), which are invariant under P, to make
the gauge bosons’ multiplet. The roots with

p'v'=3mod 1 (5)

make invariant states after combining with the three
right-moving states |i>g, |a)r which transform as
e~ 23 under P. They make three copies of matter
fields transforming under some representation of the
gauge group. Their antiparticles are obtained from
the roots satisfying p’v'=—% mod 1.

The twisted sectors correspond to strings closed up
to an action of P. They are required for modular
invariance because they can be obtained from a
7— — 1/t transformation on the untwisted sector
partition function. This transformation shifts the
Eg X E; lattice by

pl_'p1+vl+niall'a l=1a 375’ (6)

where n,=0, * 1. Different values of n; lead to dif-
ferent twisted sectors. Since in the Z orbifold there
are 27 twisted sectors, corresponding to the 27 fixed
points, this means that turning on the three inde-
pendent Wilson lines will make all the twisted sec-
tors inequivalent. This is a consequence of the fact
that different fixed points are invariant up to dif-
ferent lattice vectors. Invariance under 7—7+3 on
these sectors imposes the constraints [6]

3(v'+na)?=2m, mez. (7)
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There is then a modular-invariance constraint for
every twisted sector. The mass formulae for the
twisted sectors are modified by the shifts in the
E¢ X Eg lattice as well as by the modded oscillators’
contribution to the zero point energy. In our case we
have

img=imi={(p'+v' +maj)*+ N -1, (8)

where now Ny =0, 4, ... . Similar to the case of the
untwisted sector, a projection which selects only the
invariant states should be performed in the twisted
sectors. A careful treatment of the partition func-
tions shows that all the states satisfying the massless
conditions coming from eq. (8) survive the projec-
tion. The antiparticles come from the shifts

P—vi—nal.

3. SU(3)xSU(2)x U(1)" models. For a given
orbifold, many different models that are consistent
with the constraints of the types (1) and (7) can be
constructed, depending on the different choices of
embeddings ¢’ and Wilson lines @/ (and other back-
ground fields in more general models). The number
of consistent models is then very large, and it would
be interesting to have a general classification of them.
On the other hand, the mechanism for constructing
the models is simple enough, so it is relatively easy
to make a good selection. Here we present different
values of ¢/ and a! which lead to three-family models
and to the SU(3) xSU(2) xU(1)" gauge group in
the observable sector, starting with the Z orbifold.
We will describe in some detail the model in which
it is also possible to eliminate the unwanted extra
colour triplets; two extra models are given in the
appendix.

We take the embedding

(0= (3111305)(33000441) ,
and add the
(al)=(555%3000)(00000500) ,

Wilson lines

(a})=(0000000%)(44430004) .

It can easily be checked that the modular-invariance
conditions (7) are satisfied for this model, and fol-
lowing the discussion in the previous section, we can
find its massless spectrum. In order to obtain the
gauge group, we have to look for the Eg X Eg roots

283



Volume 191, number 3

which satisfy relations (3) and (4). They are
+(1,-1,0,0,0,0,0,0), £(0,0,0,1,1,0,0,0,)
from the first Eg, and £ (1, —1,0,0,0, 0,0, 0), * (0,
0,1,1,0, 0,0, 0) from the second Eg, where the
underlining of the numbers means that all permu-
tations are included. These roots correspond to the
gauge group

[SU(3)xSU(2)xU(1)°]
X [SU(2) xSU(2) xU(1)¢]' .

The matter fields of the untwisted sector are obtained
from the Egx Eg roots (p2=2) satisfying egs. (3) and
(5). Theyare (1,0,0,1,0,0,0,0), (1,0,0,0, —1,
0,0,0) and (0,0,0,0,0, £1, —1, 0) for the first
Eg, and (-1,0,1,0,0,0,0,0), (-1,0,0, —1, 0,
0,0,0),(1,0,0,0,0,0,0, -1),(0,0,0, £1,0, 0,
0,1),(0,0,0,0,-1,0, —1,0) and (0,0, 0, 0, 1,
0, —1, 0) for the second Eg. Therefore, the matter
fields coming from the untwisted sector are

3[(3,2)(1, 1) +4(1, 1)(1, 1) + (1, 1)(2,2)’
+(L, D2, 1) +(1,1)(1,2)7,

where the numbers in the parentheses are the
[SU(3)xSU(2)] x[SU(2) xSU(2)]’ quantum
numbers; as mentioned in the previous section, the
factor of 3 comes from the right-moving modes. The
three left-handed quark doublets are assigned to the
above representation, as may also be the case for the
three right-handed charged-lepton singlets. Cer-
tainly, these fermions alone have SU(3) non-abelian
and SU(2) global anomalies which must be can-
celled by contributions of the twisted-sector fer-
mions. This is a manifestation of the modular-
invariance requirement for the twisted sectors.

Let us consider the twisted sectors. Since we have
only two non-vanishing Wilson lines, there are nine
sets of twisted sectors (three equivalent sectors on
each set). There are massless fields coming from
every sector, but we will describe only the sets of sec-
tors that generate the right-handed quark singlets: the
sectors with n, =1, n;=0 [see eq. (6)]. For this sec-
tor the total shift is

v+a,=(13311044)(31000143

The zero modes satisfy § (p+v+a,)?+ N —%=0. For
N, =1, this equation does not have a solution, and
for N =0 we obtain the following values for p’:
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These EgxXEg weights transform as 3[(3, 1)+(l,
2)+4(1, 1)] under SU(3)xSU(2) and have chir-
alities opposite to those in the untwisted sector [3].
Thus we obtain three right-handed quark singlets, and
lepton or Higgs doublets. The other three right-
handed quark singlets are obtained from the three
sectors for which n;=1, n;=—1.

Putting the contributions from all the sectors
together, we finally obtain

3{(3,2)+(1,2)+2(3%, 1)+ (1, 1)}+12(1,2)

+3(2,2)' +18(2, 1)’ +18(1,2) +singlets ,

- which is the standard model content plus extra sin-

glets and doublets.

Notice that unlike other known phenomenologi-
cally interesting string compactifications, there are
no colour triplet fields which could give rise to fast
proton decay. The particular form of the Wilson lines
chosen is such that those fields disappear from the
massless spectrum. This mechanism for getting rid
of the dangerous colour triplets is different from the
one described in ref. [7], in which only some of the
dangerous colour triplets are projected out.
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It could also be possible to consider a non-vanish-
ing a4 and kill some or all of the extra doublets. Note
that the minimum number of doublets we could
obtain is one third of the number we have (15), which
is also the minimum allowed by phenomenology.

These chiral fermions have neither non-abelian nor
SU(2) anomalies. However, as frequently occurs
when we adopt non-standard embeddings [ 5], there
are U(1) anomalies. A Green—Schwarz-type mech-
anism is believed to give a mass to the anomalous
U(1) boson [8] and probably induce supersymme-
try-breaking by a D-term [9,5]. This may or may not
affect the standard model particles directly, depend-
ing on the anomalous U(1) assignments of quarks
and leptons.

4. Conclusions. We have succeeded in constructing
phenomenologically interesting models based on the
Z orbifold with Wilson lines. Many similar models
can probably be constructed in this manner, using
different orbifolds. Our formalism, in which the
embeddings are made in an abelian way, has the lim-
itation of leaving the rank of the gauge group
unchanged, implying that we have to deal with many
extra U(1)’s. It would be interesting to find a mech-
anism that lowers the rank of the gauge group, and
to see if models closer to the standard one can be
obtained in that way [10].

The large amount of, up to now, consistent string
theories in four dimensions is in some sense dis-
couraging because of the lack of predictive power of
the theory. Hopefully, more restrictive constraints
will be found which would kill most or all of what
are at present thought to be consistent models - if we
are lucky enough, only one model will survive con-
taining the world we live in. We may also have a vac-
uum that is not unique. In any case, proof of the
existence of phenomenologically interesting consis-
tent models, and further investigations in this direc-
tion, are certainly needed in order to understand the
physical implications (if any) of string theories.

One of us (J.E.K.) thanks the CERN Theory Divi-
sion for the kind hospitality extended to him. J.E.K.
is supported in part by the Korean Science and Engi-
neering Foundation and the Ministry of Education.
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Appendix.
Model 2.
We take the embedding and the Wilson lines as

v=(41412000)(20000000) ,
a, = (00000003 )(03004442)

a;=(44333034)(33000000).
The unbroken gauge group is
[SU(3)xSU(2) xU(1)%]

X [SU(4)xSU(2) xSU2)xU(1)%]",
and the chiral fermions are
3{(3,2)+(1,2)+2(3%, 1)+ (1, 1)}

+6{(3,1)+ (3% 1)}+18(1,2)
+3(1,2)(1, 1,2) +3(4,1,2) +6(4%, 1, 1)’

+18(1,2,1)' +18(1, 1, 2)’ +singlets .

Besides having the unwanted extra quark singlets, this
model mixes the non-abelian subgroups of E; and
Eg, thus ruining the SU(3) xSU(2) xU(1)” struc-
ture. However, this can easily be overcome by using
the extra Wilson line that we have not yet consid-
ered, e.g. as=(0, .., 0)(0, 0,0, %, 0,0, {, 1), which
eliminates the SU(2) X SU(2) symmetry in the hid-
den sector without changing the main structure of
the model - except for the fact that the standard
model quark singlets come from independent twisted
sectors.

Model 3.

The shift vector and the Wilson lines are taken as

v=(44142000)(20000000) ,
a, = (0000000%)(04 100000) ,

a3 =(44314044)(44000000) .
The unbroken gauge group is

[SU(3)xSU2) xU(1)°] x[SO(10) xU(1)3]",

and the chiral fermions are
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3{(3,2)+2(3%, 1)+ (1,2) +(1, 1)}

+3(16)" +12{(3, 1) +3%, 1)}

+36(1, 2) +singlets .
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