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We investigate the axions of E 8 × E~ superstring models under the simple dimensional reduction scheme. We find that E~ 
gaugino condensation must occur above 1011 GeV from consideration of the axion energy density problem. In addition, we 
find that the gauge coupling constant of an abelian gauge interaction descending from E 6 is smaller than that of non-abelian 
interactions at the compactification scale. 

Recently discovered anomaly-free superstring theo- 
ries with gauge groups 0(32)  or E 8 X E~ have attract- 
ed a great deal of  attention [ 1 - 1 2 ] .  It renders the hope 
that they may unify the known interactions with gravi- 
ty. 

The E 8 X E~ models are favored over the O(32), 
because the latter models predict vectorlike fermions 
or massless _ 2 Q - ~ quarks [4,5]. Requiring d = 4 , N  
= 1 supersymmetry to solve the gauge hierarchy prob- 
lem, we therefore study E 8 X E~ models on Calabi-  
Yau manifolds. 

It has been known that this type of  models has 
two axions. Strong CP invariance is guaranteed with 
these two axiom [3].  In this paper we investigate 
the axion physics in the simple dimensional reduction 
scheme which was proposed byWit ten  [7] .  The re~ 
suiting d = 4 theory can be considered to be qualita- 
tively equivalent to the effective d = 4 theory with 
Calabi-Yau internal space. We also investigate the 
effect in the low energy effective theory due to the 
Wilson loop vacuum configuration of  the Yang-Mills 
potential [4,8].  In these investigations, we fred a uni- 
fication scale dependent correction to the abelian 
gauge couplings descending from E 6 . 

The basic method of  dimensional reduction is to 
include only SU(3) $ SU(3) singlet fluctuations around 
the presumed vacuum configura.tion where SU(3) 
denotes the holonomy and SU(3) is the holonp_jomy 
embedding in E 8 [7].  The relevant SU(3)~ SU(3) 
singlet bosonic degrees can be written as 

4 .(I0) .(10) = exp ( -3o /Mc)g  ), 6mn = exp(o[Mc)Smn, 6/~V 

=Mle v a~°al Huron =M2emnat~a2' Hpup ~ p ' 

A (10) = A A(m 10) = <A m) + (Camh a + h.c.), (1) /a /~' 

where g~0 N) is the d = 10 metric, HMN P is the three- 
form gauge invariant field strength and A(M 10) denotes 
the d = 10 Yang-Mills potential. We use d = 10 in- 
dices M, N, P; d = 4 indices/~, v, p; d = 6 indices m, 
n, p;  SU(3) indices a, b, c. emn = diag 002,  io2, io2) 
corresponds to the complex structure of  Calabi-Yau 

a • a b _  * * _ space and the C m satisfy C m Cm. ~ C;n a Cmb - 0 
a * 

and C m Cmb = 6~. The SU(3) $ SU(3) singlet fluc- 
tuation h a transforms as 27 of  E 6. (A m) is the VEV 
of  the Yang-MiUs connection which is the same as 
the spin connection. We define Me, M 1 and M 2 as 
mass parameters which make the kinetic terms of  a, 
a 1 and a 2 as canonical ones. Note that (o) is not  de- 
termined at the classical level. 

From the action 
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f d l O x( -~g(l O)) { - (  l l 2k2 )R (l O) 

- (1/120g 2 ¢) Tr FMNFMN 

-- [ 3k2/2~, 2 dp)2 ] H MNP HMNP) 

= f d 4 x ( ~ ) [ _ ( M 2 / 1 6 1 r ) R  (4) 

- (1/120~'2)Tr FUVFv - ½ (a/~ a 1)2 

- l ( a ~  a2)2 - ½(a/~ 0) 2 + . . .] ,  (2) 

we Fred 

Me2 = (3/~)Mp2,, M2 = (~'4/14~)Mp2, 

M22 = (x8 / 3 )Mf , 

g2 ~/k2 = (x3"~'2/8~r)M2p, (3) 

where x = exp ((o)/Mc) and ~" is the d = 4 Yang--Mills 
coupling constant at the compactification scale. It is 
known that a 1 and a 2 correspond to axions. We will 
see later thatM 1 andM' 2 are related to the axion de- 
cay constants. Since the radius of  the internal space 
can be regarded as V~ times Me-I, the grand unifica- 
tion scale can be identified as [9] 

<A m) ~ MGU T "~ x -1/2M e. (4) 

With this relation, let us "consider the axiom a 1 and 
a 2 . Because we expect two non-abelian gauge interac- 

t tions ,1 in the d = 4 effective theory of the E 8 X E 8 
superstring, the existence of two axions is desirable 
for strong CP invariance [13]. Hereafter, SU(3)e X E~ 

t is assumed to be an exact d = 4 gauge symmetry. E 8 
takes the role of the hidden sector for dynamical su- 
persymmetry breaking [6,7]. Then we must diago- 
nalize two axiom by their SU(3)e X E~ instanton 
couplings, The instanton coupling of the model inde. 
pendent axion a 1 comes from the loop effect through 
the Wess-Zumino terms in the d = 10 lagrangian. 
This is manifest from the Bianchi identity for the 
three-form field strength HMN P. For the model depen- 

,1 One can imagine that E~ is broken down to U(1) 8 by a 
Wtlson fine element at compaefification, but dynamical 
SUSY breaking prefers an unbroken non-abelian subgroup 
of E~. 

dent axion a2, its instanton coupling resides in the 
Wess-Zumino term itself. 

The Wess-Zumino action is 

o o S~=c f (-38x 8 + 2x~xT), (5) 

where the notation of ref. [1 ] is used. From this, the 
d = 10 equation of motion for the two-form poten- 
tial BMN can be written as 

~M (-- [3e/(g2 ~)2 ] HMM1M 2 + zMM1M 2 } 

= (3c/32k2)eM1M2M3 ...Mlo 

X (~4 Tr FMsM4 FMsM~ FMTMs FMgMx ° 

-- ~2-~ Tr FM3M4FMsM 6 Tr FMTMs ~ M , o  

- Tr eMsM, tr RM ,,s RM9M, o 

+ 1 tr RM3M4 RMsM6 tr  RMTMs RMgM10 ), (6) 

where ~MNP is a fermion bilinear three-form. The 
Bianchi identity is 

dH = - ~  TrF  2 + t rR  2. (7) 

From eqs. (6) and (7), we obtain d = 4 axion equa- 
tions. If we consider only the Yang-Mflls fluctuation 
around the vacuum, we find . . . . . . . . . . . . . . . . . . . . . . .  

a2al = _( I [2M. ) (F  i ffi + F,i if ,i),  

~2a2 = - (1/2M2) (F~v ~ v  1 C F : )  ' 

where 

iI~' 2 = (cx2 g4 q~2 [3840k2)emn emnpq rs 

(8) 

(9) 

X Tr(Fpq)(Frs)M2, (10) 

and F~ (F "/)  denotes the E 6 (E~) field strength and pi 
(ff~/v) is its~lual. Note the sign difference of E 6 and ~v 
E~ Pontryagin densities in eqs. (8) and (9). Because 
of these independent a 1 and a 2 couplings to field 
strengths, there are two independent axiom and strong 
CP invariance is guaranteed, even though there is an- 
other Yang-Mills interaction E~. From eqs. (8) and 
(9), we obtain the axion lagrangian 
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£axions = ½ (0 u al)2 + i ( ~  a 2 ) a  2 

- -  ½(a 1 [M 1 + a2/M2)~v ~ :  

- ½ ( a l / M  1 -a2/M2)F'~ivff'ui~, 

= ½ (0 u a) 2 + ½ (Ott a') 2 - (a /2M)FF 

- (a ' I 2M ' ) [F 'F '  + (M 2 - M21)I(M2 + M 2 ) F - ~ ] ,  
(11) 

where 

a -- (Mla 1 + M2 a2)/(M  1/2, (12a) 

a' = (M 2 a 1 - M 1 a2)/(M2 + M2) 1/2 , (12b) 

and 

M=½(Mf  + M2) 1/2, (13a) 

M' = MIM2/(M2 +M2) 1/2 . (13b) 
I 

Now we can see that a' corresponds to the E 8 axion 
[5], and a corresponds to the QCD invisible axion 
[14] ; both SU(3)c and Eh vacuum angles are set to a 
CP conserving value by these axions. 

The E~ is assumed to be stronger than QCD. Then 
the potential for a' is dominated by the E~. Using the 
result on the gluino mass of  ref. [6], we get the axion 
potential V 

V = 0r/4M~)A611 - exp (ia'/F)l 2, (14) 

where F = 15M'/161r 2 and A 8 is the scale of  E~ glu- 
ino condensation [9]. Therefore, the a' mass is 

m 2 = 647r5A6/Z25M2pM '2. (15) 
a ~ 

As is well known, the axion potentials can give rise 
to cosmological energy density problems [15]. The 
nondissipated axion energy density at present is pro- 
portional to (A) 8 where A is the scale of the phase 
transition and 6 is a model dependent constant which 
is larger than ½ in general. For an axion decay con- 
stant F a larger than 1012 GeV and A --- AQC D, the 
consideration of cosmological axion energy density 
requires a f'me-tuning of the axion VEV before the 
phase transition. For the case of a' which corresponds 
to F a, ~ 1016 GeV and A 8 >~ AQCD, the axion ener- 
gy density problem is much worse than that of a if 
the lifetime of a' is larger than the age of the uni- 

verse ,2. The main decay mode of a' is to two mass- 
less E 6 gauge bosons through the a'Fff term of eq. 
(11). For the estimate of  the a' lifetime, we take 

M'  = M  1 = (~'2Mp/12x/r~) m 1.1 X 1017 GeV,  

(M 2 - Mf ) [ (M 2 +M22)= 1. (16) 

The lifetime of a' is 

r a, = (32~r/N)M'2/m3 a, ~ {8 × 10115/[A (GeV)] 9}s, 

(17) 
where N ( ~  100) is the number of effective decay 
channels. Requiring r a, ~< 1.5 × 1010 yr (1 s), we ob- 
tain 

A/> 9.7 X 1010 GeV (7.5 X 1012 GeV). (18) 

Note that our bound (18) is consistent with the value 
A "" 5 X 1013 GeV of ref. [6] which uses the rela- 
tion mgaugin o --~ M w . The bound (18) or the bound 
for A of ref. [5] is quite general because of the model 
independent axion. It  does not depend on the details 
of compactification and low energy physics. 

Finally let us consider the coupling constants of 
d = 4 gauge groups at the compactification scale. E 6 
can be broken down to its subgroup by Wilson line 
elements which preserve N = 1 supersymmetry [4,8, 
16]. In the simple dimensional reduction scheme, 
this can be implemented most simply by (A m ) along 
an abelian direction transforming as 78 of E 6. Let us 
decompose (A m) as 

(A m ) = (A m [1, 8]) + (A m [78, 1]) 

= <A m [1, 8]) +MGuT Z, (19) 

where A m [1,8] (A m [78, 1] ) transforms as [1,8] 
([78, 1] ) under E 6 X SU(3) and Z is the generator 
of  the U(1)~ subgroup descending from E 6. Because 

is embedded in the adjoint representation of E8, 
we normalize Tr ~2 = 30. We will consider G X U(1)~ 
X E~ where G is a subgroup of E6, which commutes 
with U(1)z. Note that the U(1)-breaking mechanism 
of ref. [3] does not occur because the field strength 
for <A m [78, 1 ] ) vanishes. 

,2 Such a possibility has been considered in ref. [5] under 
an assumption which is different from that of the present 
analysis. The basic assumption of ref. [5] was that super- 
symmetry is badly broken by some unknown reason and 
gauginos are extremely heavy. 
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There is a term in the d = 10 lagrangian which con- 
tributes only to the kinetic energy of the U(1)~ gauge 
field. Note that 

Hwn n = - ~  Tr (Am)F v + ... = --MGuT% v + .... (20) 

where G~v is the field strength of the U(1):~ gauge 
field. From 3 k2/2g4¢ 2, HMNpH MNP and eq. (20), 
we can calculate the kinetic energy term of the U(1) 
gauge bosom Using eqs. (3) and (4), we obtain [17] 

~,2/~,2 = 1 + 576rrx -4M2""GUT '~/M2" P TM 1 + 432X-5, (21) 

where ~.2 is the U(1)z coupling and ~,2 is the coupling 
of the other nonabelian gauge group descending from 
E 6. Therefore, 

~-2 [compaelification ~2 scale > g z  Icompaetificalion scale" (22) 

To see the validity ofeq.  (21), let us consider the 
role of  other possible higher dimensional operators to 
the D = 4 gauge coupling constants. Any possible dis- 
crimination of~" and ~'z at the unification scale must 
appear through (A m [1,78] ). For example, the opera- 
tors which depend only on the field strength FMN 
do not affect eq. (21) because the field strength of 
(A m [1,78] ) is vanishing. Then we consider gauge in- 
variant or covariant operators which have explicit 
(A m [1,78])  dependence. Some possible operators 
are HMNP, D M FNp and the higher order covariant de- 
rivatives Of FMN. Among the gauge invariant and 
Lorentz invariant operators constructed by them, on- 
ly HMN P H MNP can distinguish ~" and ~'z. For exam- 
ple, the operator Tr D M FNp DMF NP gives a null 
contribution to D = 4 gauge kinetic terms of unbroken 
gauge interactions: 

Tr D M FNp DM F NP 

-~ Tr[(A m [1,781),F~v ] [(A m [1 ,78] ) ,F  ~v] = 0, 

(23) 
because the unbroken D = 4 gauge field strength Fu~ 
commutes with (A m [1,78]). Therefore we conclude 
that eq. (21) is not affected by the presence of other 
higher dimensional operators. 

The correction to ~'2 can be neglected for x ~ oo 
which is the limiting case of  flat d = 10 space-time. 
For example, x > 6 implies ~'2/~ 2 < 1.06. But x can- 
not be arbitrarily large. We note that a large x gives 
a large decay constant for the QCD axion a in view of 

eqs. (3), (10) and (13a). hence, a large x makes the 
problem of QCD axion energy density worse ,3. On 
the other hand x cannot be too small for certain chan- 
nels of  spontaneous symmetry breaking. If  the hyper- 
charge Y of the standard model is a linear combina- 
tion of generators of U(1)~ and a U(1) from G, i.e. 
g~ = g"~ cosot, a small x implies a very small g~ .  
Namely,x = 1 irnpliesg '2 <g2/433 at the compactifi- 
cation scale, which is not acceptable. Therefore, the 
low energy phenomenology is very sensitive to the 
details of  compactification. Even though the ratio (21) 
is highly dependent on the compactification, it gives 
an interesting low energy implication. In particular, 
the renormalization group analysis in these theories 
[16,18] a la Georgi, Quinn and Weinberg [19] must 
take this effect into account. 

In conclusion, we find the following. Strong CP in- 
variance is guaranteed because there exist two axiom 
a 1 and a 2 whose instanton couplings are not propor- 
tional. The E~ axion a' must decay rapidly enough 
so that it does not cause a cosmological energy densi- 
ty problem. The axion (a') energy density problem is 
quite general, which does not depend on the compac- 
tification schemes. The abelian and non-abelian gauge 
couplings descending from E 6 are different at the 
compactification scale. Even though their ratio is high- 
ly dependent upon compactification, this will be use- 
ful for a phenomenological application to sin 2 0 w. 

This .research has been supported in part by the 
Korean Science and Engineering Foundation and the 
Research Institute of  Basic Sciences, Seoul National 
University. 

,3 For the QCD axion a, the cosmological energy density 
problem exists irrespective of the x value because of the 
relafionM = 1(M~1 +M~2)1/2 ~> el/2. 
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