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We discuss ordinary as well as supersymmetric SU(5) × ~(1) models in the hope of accommodating acceptable Zp and 
sin 20 w. The ordinary SU(5) × ~d(1) model does not have the monopole. The supersymmetric SU(5) × U(1) model can be 
unified in SO(10). 

1. Grand unified theories (GUTs) provide a well- 
defined framework capable of unifying weak, electro- 
magnetic and strong interactions [ 1 ]. The "hard" 
predictions of GUTs include sin 2 0 w ~ 0.215, rnb/rn r 

2.9 and proton decay mainly to e+Tr 0 with a life- 
time Zp ~ 1029 -+ 1 y. On the other hand, GUTs have 
a rich topological structure such that superheavy 
monopoles (M ~ 1016 GeV) are contained in the par- 
ticle spectrum of the theory [2]. Present experimen- 
tal evidence disfavours either proton decay to e+lr 0 
[3] or the existence of monopoles as predicted in the 
minimal SU(5) [ 1 ] ,x 

It is remarkable that by going supersymmetric [5], 
both the above problems are naturally eliminated, 
while sin 20 W and mb/m r remain unchanged ,2 
Namely, in SUSY GUTs the p -+ e+rr 0 mode is natu- 
rally suppressed (vK or/aK modes are the favourable 
channels) while a delayed phase transition from the 
GUT to the SU(3) X SU(2) X U(1) phase ( T c ~  1010 
GeV) or inflation [7 ] evades the monopole problem. 

Nevertheless, it is of considerable interest and a 
challenging problem to construct ordinary GUTs 
which do not suffer from the above diseases. This is 
the problem that we address in this paper, out of scien- 
tific curiosity, since we are fully aware of the "goodies" 
of  SUSY models. It is by considering the introduction 

1 On leave of absence from the Department of Physics, 
Seoul National University, Seoul 151, Korea. 

,1 For a review see ref. [4]. 
,2 For recent reviews see ref. [6]. 
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of an extra U(1) which contains a part of the electro- 
magnetic gauge group U(1)e m that there is no stable 
monopole in the theory and the monopole problem 
does not exist. Furthermore, the SU(N) coupling con- 
stant and the U(1) coupling constant can be arbitrary 
and hence the proton lifetime can be made sufficient- 
ly longer. 

With proper phenomenological inputs, we calcu- 
late the SU(N) coupling constant g 2  and the U(1) 
coupling constant ~2 at the SU(3) × SU(2) unifica- 
tion scale.M. I fg  2 ~ g 2  the group SU(N) × U(1)is 
the partial unification group, and we achieve our ob- 

if g2 >~,2,  there exists a possibility of fur- jectives. 
ther unification-~" of ~SU(N) × U(1). Then we cannot 
resist unifying it in a simple group at M u > ~r, and in 
this case, the monopole problem is resolved by the 
inflationary idea [7]. Indeed, we encounter both of 
these examples in SU(5) × U(1) models with and 
without supersymmetry. 

The paper is organized as follows. In section 2, 
we set our rules for finding fermion representations 
in SU(N) X U(1) models and point out that only one 
class of models is available for our purpose. In sec- 
tions 3 and 4, we present SU(5) X U(1) models with 
and without SUSY, respectively. In section 5, we show 
that an SU(7) × U(1) model with integer charged lep- 
tons is not a viable choice. 

2. With educated reasons [8 -10] ,  we set the fol- 
lowing rules for SU(N) × U(1) theories: 

(i) There should not exist triangle anomalies. 

0.370-2693/84/$ 03.00 © Elsevier Science Publishers B.V. 
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(ii) The fermion representation must be chiral un- 
der SU(N) X U(1). 

(iii) The fermion representation must be real un- 
der the subgroup SU(3)c × U(1)e m . 

Let us concentrate on completely antisymmetric 
fermion representations of the SU(N) groups. This is 
reasonable because the quarks are believed to be 3 
and 3* of SU(3)c. An irreducible fermion representa- 
tion with rn antisymmetrized indices is denoted as 
RN. There exist three types of triangle anomalies 

AI[AAA1 N, A2[AAYI  N, A3 ['Y'YyIN (I) 

N where A and ~ inside the for a fermion loop R m 
bracket represent the external SU(N) gauge bosons 
or U(1)gauge bosons. Therefore, we satisfy three 
anomaly free conditions. From conditions of vanish- 
ing A 1, A2 and A 3 anomalies, we obtain 

N-1 
n (N - 2m) (N - 3)! = 0, (2) 

m= 1 m (N - m - 1 ) ! (m-  1)! 

N-1 

"m ~ -- 0, (3) 
rn=l m l 

N-1 

m~=l= rlmdm "~3m + n0'Y3 = 0' (4) 

where nmis the number of irreducible representations 
R N, and Ym is the U(I) charge of the represen- 
tation R r~ N . We alsointroduce an SU(N) singlet R N 
whose Y values is Y0" Note that it is generally diffi- 
cult to satisfy eqs. (2)-(4)  without a singlet. With 
singlet(s), eq. (4) is merely a defining equation for 
Y0- This definition is possible because a cubic equa- 
tion has always a real root. 

Let us first find out the simplest solution to eqs. 
(2)-(4).  Eq. (4) is satisfied by the introduction of 
SU(N) singlet(s). The simplest solution is obtained 
by precise matching of each term in the sum of (2) 
and (3), which results in the condition 

'Ym = N - 2m. (5) 

This solution is equivalent to the hypercharges of ir- 
reducible representations of SU(N) when a spinor 
representation of SO(2N) breaks into SU(N) X U(1) 
[11]. The simplest choice is therefore n m = 0 for m 
= odd and n m = 1 for m = even, which is obtainable 

from one spinor representation of SU(2N). This rep- 
resentation then satisfies the properties (ii) and (iii) 
too. 

Let us next consider possibilities of more general 
solutions. For this purpose, the constraints (ii) and 
(iii) play important roles. Indeed, there exists a study 
of this problem in the literature [ 10]. The conclusion 
is that (reducible) fermion representations with prop- 
erties (i)-(iii) are possible only for the spinor repre- 
sentations of SU(2n + 1), i.e., the representations ob- 
tained from the spinor representation of SO(4n + 2). 
In ref. [10], the conclusion was drawn without U(1). 
Nevertheless, we will get the same result with the in- 
clusion of U(1)also since the result of ref. [10] led 
to the spinor of SU(2n + 1). Thus, possible fermion 
spectra satisfying properties (i)-(iii) are expected to 
be: 

• % + ~ :  su(5) × ~(1), 

ffa + Ca/~+ ff,~'r : SU(7) X U(1), 

ffa + ¢~# + ffa~.y + tk~¢'ra : SU(9) X U(1). (6) 

We show this property explicitly for SU(5) X U(1) 
and SU(7) X U(1). The complexity property is ap- 
parent from the representations (6). The reality prop- 
erty is equivalent to the existence of all possible 
Yukawa couplings which can give masses to all SU(3)c 
X U(1)e m non-trivial fermions. Therefore, we study 
all possible Yukawa couplings instead of checking the 
SU(3) c X U(1)e m property. We know that SU(2n + 1) 
fermions are real if all possible Yukawa couplings are 
allowed. Thus, we prove the reality property by the 
following dictum. First, write down all possible 
Yukawa couplings allowed by the SU(2n + 1) gauge 
symmetry only. Then, assing U(1) hypercharge by 
the formula (3). If some couplings are forbidden by 
the U(1) hypercharge, there is a chance that some 
fermions do not get masses. If U(1) hypercharges of 
Higgs fields are not completely determined, there will 
remain a global symmetry which forbids mixings be- 
tween the fermion generations or even some fermions 
would not get masses. However, if the U(1) hyper- 
charges of the Higgs fields are uniquely determined, 
then we obtain the desired reality property. 

For SU(5) X U(1), the hypercharge assignment 
by eq. (3) is idential to the one by eq. (5), i.e., 

"~(%) = - 3 ,  ~(~ , '~)  = 1. (7) 
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The Yukawa couplings are, 

qJc~ qJC'~H~, ~c~ ~'r~ He ec~ySe, (8a,b) 

which uniquely determine 

Y(H") = -2 .  (9) 

. y t  1 1 1 . 1 1 = (-~,~, ~, --~, 

= (-3, -3, -3; -3, -3), 

10: Y ' =  2 2 _ 2 . 1  1 1 1 1 1 .  1), ( - ~ , - ~ ,  ,~ ,~,~,~,~,~,  

(15) 

Therefore, we satisfy the reality condition. For SU(7) 
X U(1), we can satisfy eq. (3) by the following as- 
signment 

f f ( f f~e~)=_l ,  ~ ( ~ a e ) = y ,  ~ ( ~ b ) = 1 0 _ 5 y .  

(10) 
The relevant Yukawa couplings are 

,b H e °d3"16pvp ~b°~/rS HPVP ~ 
a rt3"16 - - p r o  - , r ,, ~oef3'y6pvp" 

(11) 
Eqs. (10) and (11) are satisfied withy = 3, i.e., 

~(%)=-5, Y(~ )=3 ,  ~(%e.~)=-l, 

Y(Ha) = - 2 ,  Y(H"e'f) = -6 ,  (12) 

which agrees with the assignment (5). The spinor rep- 
resentation is real. 

We have also checked this reality property for 
SU(9) X U(1). It is believed that the spinor represen- 
tation of SU(2n + 1) X U(1) with the hypercharge 
given by eq. (5) satisfies ~roperties (i)-(iii) provided 
a SU(2n + 1) singlet has Y(ff0) = 2n + 1. 

3. Let us consider an SU(5) X U(1) model ,a with- 
out SUSY. This model has the same particle assign- 
ment as Barr's [13], but we differ in philosophy from 
his by not unifying ~(1) within SO(10). The electro- 
magnetic charge Qem is given by 

Qem =13 - ~Y'+ gY' 1~ (13) 

where 

1: Y'=0, ~=5, (14) 

,a In another context, SU(5) × U(1) was considered in 
ref. [12]. 

"Y = (1,1,1; 1 ,1,1,1,1,1;  1). (16) 

Defining the coupling constants associated with 
T3, Y' and Y by g2 ,g' and ~', respectively, we have 
a relation [14] 

lie 2 = 1/g 2 + 1/25g '2 + 1/25~ "2. (17) 

To study and compare the evolution of coupling con- 
stants, it is useful to define properly normalized gen- 

' = C ' Y '  erators Y1 and I(1 = C Y  such that (on the six- 
teen states) 

Tr(Y~ 2) = Tr ('Y12) = Tr(I 2) = 2 (18) 

(i.e., C '2 = 3/5 and ~2 = 1/40) and the associated 
coupling constants verify 

1/e 2 = 1/g 2 + 1/15g~ 2 + 8 / 5 # .  (19) 

In particular, we obtain for sin 2 0 w at the SU(5) uni- 
fication scale M where g2(M) = g1014) -- g5 

sin20 O -~-3 {1 + ] [(g52/'~'?)a~ - 1]} -1 , (20) 

where g5 is the unification coupling constant at M. 
Ifg'l = gs, sin2 00w = 3/8 as expected. To have a larger 
proton decay rate than the one of the SU(5) model, 
we must start with a relation Ig5 [ < Ig'l ] at M so that 
the prediction of sin 2 0w.(Mw) is untouched with a 
larger GUT gap,M w - M .  Because of the condition 
[g51< Ig"l 1, we cannot further unify SU(5) X U(1). 

The evolution of coupling constants is 

1/g2(Mw ) = 1/g 2 + (1/8. 2) (-11 + ~Ng)In(M/Mw) , 

(21) 

1/g2(Mw) = 1/g 2 

+ ( 1 / 8 r r 2 ) ( - ~  + ~Ng + ~ N H ) I n ( M / M w )  , 

1/g2 (Mw ) = 1/g~ (~14) 

(22) 

+ (1[87r 2) (~Ng + ~ NH)In(M/Mw)  , (23) 

where Ng and N H are numbers of families and Higgs 
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Table 1 
.~and (g~/~'~)/~ in ordinary SU(5) X [J(1). 

PHYSICS LETTERS 10 May 1984 

N H sin 20w(M W) uc(MW) ~" sin 20W(3-/) (g~ fff~)~- 

1 0.215 0.10 2.18 x 1014 0.359 1.074 
1 0.215 0.13 9.58 X 10 ls 0.382 0.970 
1 0.215 0.16 1.02 X 1017 0.397 0.910 
1 0.225 0.10 1.73 X 10 is 0.382 0.969 
1 0.225 0.13 7.59 X 1016 0.405 0.875 
1 0.225 0.16 8.07 x 1017 0.420 0.820 
2 0.215 0.10 6.63 X 1013 0.351 1.116 
2 0.215 0.13 2.49 X 1015 0.372 1.012 
2 0.215 0.16 2.40 X 1016 0.386 0.952 
2 0.225 0.10 4.81 X 1014 0.373 1.009 
2 0.225 0.13 1.81 X 1016 0.395 0.914 
2 0.225 0.16 1.74 X 1017 0.410 0.859 

doublets_ The value g2 (~f)is related to g2 and ~'?(/~) 
by 

1/g2(ffl) = 1/25g2(/~ r) + 24/25~'?(d~). (24) 

From (21) and (22), we obtain a useful relation 

ln(M/Mw) = 27r(sin20w/O%m - 1/ac)/( ~ + ~NH)IMw. 

(25) 
For various input parameters OfNH,  sin 2 0w(Mw) 
and c%(Mw), we present in table 1 the valuesM, 
sin2 0w(~/), and (g52/~'?)~. For example, for Ng = 3, 
N H = 1, sin20w(Mw) = 0.215, ac(Mw) = 0.13 and 
C%m(Mw) -1 = 128, we obtain J;/-~ 9 X 1015 GeV, 
7"p ~ 1035 y, and (g2/~?)~r = 0.97. If  higher order 
effect does not change the relation (g2 t~?)~  < 1, 
we cannot unify SU(5) X U(1) in a simple group for 
this attractive set o f  input parameters , 4  In this case, 
there would not exist a monopole and rp is too long 
to be observed by current proton decay detectors. 

4. For the case of  SUSY SU(5) × U(1), we obtain 

1/g2(Mw ) = 1/g 2 

+ (1/8~r 2) ( - 9  + 2Ng)ln (M/Mw), (26) 

1/g2 (Mw ) = 1/g2 

+ (1/87r 2) ( - 6  + 2Ng + {NH)ln(M/Mw),  (27) 

,4  However, note t h a t  w e  car ,  r m ,  e ¢g~/F?)~ > 1 for N .  
=2 .  

+ (1/8fr 2) (2Ng + ~o N H)ln (M/Mw), (28) 

In 0~/Mw) = 27r(sin 2 0W/O~em - 1/c%)/(3 + { N H)IMw. 

(29) 
In table 2, we present the values of  M, sin20w(ff/) 
and (g52/~'?)~ for several input parameter sets. We 
note that for the case o f N  H = 2 reasonable values of  

are obtained from acceptable values of  sin 2 0w(Mw). 
Furthermo re, it generally gives (g2/~,?)~ > 1, imply- 
ing a possibility of  unification in SO(10). For example, 
for Ng = 3, N H = 2, sin 2 0w(Mw) = 0.215, c%(Mw) 
= 0.13, and O~em(Mw) -1 = 128, we obta inS/-~  2.5 
X 1015 GeV, rp -~ 1033 y, and (g~5/~12)~ -~ 1.32. The 
case N H = 4 is not successful. 

5. In this section, we present an analysis for the 
SU(7) X U(1) model based on the fermion spectrum 
of ref. [15].  For the fermion spectrum obtainable 
from SO(4n + 2), it is generally true to have only two 
patterns of  SU(2n + I)  X U(1): one is the usual 
SU(2n + 1) and the other is the anti-SU(2n + 1) 
X U(1). The Dynkin weight diagram of  the spinor of  
SO(4n + 2) has a distinctive shape [11,15]. The inter- 
connected central part is connected to two strings 
with two weights on each string. The weight on the 
end of  a string is either the highest or the lowest 
weight. Only these two weights can be singlets under 
SU(2n + 1) X U(1), since we can disconnect only one 
simple root from either of  these two to make the 
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Table 2 
~r and (g~f~ )~  in SUSY SU(5) × ~(1). 

PHYSICS LETTERS 10 May 1984 

N H sin2 0w(M w) C~c(MW) ~ sin2 0W(l~/) (gs/g12 2)11~ 

2 0.215 0.10 6.63 X 1013 0.294 1.456 
2 0.215 0.13 2.49 X 10 is 0.315 1.316 
2 0.215 0.16 2.40 X 1016 0.330 1.225 
2 0.225 0.10 4.81 X 1014 0.322 1.275 
2 0.225 0.13 1.81 X 1016 0.347 1.136 
2 0.225 0.16 1.74 X 1017 0.365 1.046 
4 0.215 0.10 2.76 × 10 H 0.251 1.823 
4 0.215 0.13 5.02 × 1012 0.261 1.730 
4 0.215 0.16 3.07 × 1013 0.268 1.667 
4 0.225 0.10 1.34 × 1012 0.272 1.631 
4 0.225 0.13 2.44 × 1013 0.284 1.533 
4 0.225 0.16 1.49 X 1014 0.293 1.467 

root a singlet under SU(2n + 1) X U(1). The analysis 
presented in this part can be applied to SU(7) X U(1) 
models with fractionally charged leptons. 

The anti-SU(7) X U(1) model has the following 
relations, 

Qem = 13 + Y + ~ Y' (30) 

Y ' ( 7 ) = d i a g ( ~  13 13. 3. , ~ , ~ 7 , - ~ , - - ~ ;  s s - 7 ,  - ~ ) ,  (31) 

Y(1) = 7, Y(7--) = - 5 ,  (32,33) 

Y(21) = 3, ~(3-5) = - 1 ,  (34,35) 

1/e2=l/g2+(~ ~y,2)/g,12+(~91 ~ ' ~ 2 ) / ~ , ? ,  

(36) 
¢ 

where gl  and g'l are the coupling constants for prop- 
erly normalized generators. Since 

Tr y,2(ff~) _ 9s (37) 

Tr r ,2( f fag)  = ( N -  2)Tr y,2(ff~),  (38) 

Tr y,2(ffa~-r) = ~ ( N -  2 ) ( N -  3)Tr  r ' 2 ( t ~ ) ,  (39) 

we have 

Tr Y'2(64)= 16 X 9s (40) 

Tr 72(64)  = 16 X 28. (41) 

Therefore, 

1/e 2 = 1/g 2 + 95/21g'12 + 8/7~'?,  (42) 

6 2 2 s in200 = i~g6/[1 + ~ ( g 7 f ~ i ) ~ ] .  (43) 

Certainly, we obtain sin 2 0 0  = 3/20 for g7 = g'l- 
The renormalization group analysis of coupling 

constants does not give acceptable intermediate mass 
scales, and we do not succeed in the SU(7) X U(1) 
model. However, it will be certainly possible to have 
acceptable intermediate scales for SU(7) X U(1) mod- 
els with fractionally charged leptons. 

6. We have seen that adding supersymmetry to the 
SU(5) X U(1) model leaves open the possibility of  
subsequent unification. At )~,g5/~1 > 1, and then 
these coupling constants will meet at some new scale 
M u ,> M, where unification into SO(10) for instance 
can occur. We will now discuss the supersymmetric 
SO(10) model ,s and the possible realization of the 
symmetry breaking pattern 

so(10) -+ su(5) x U(1) 

SU(3)c X SU(2)L X U(1)y .  (44) 

SO(10) breaking into SU(5) X U(1) can, in prin- 
ciple, be induced by a real antisymmetric tensorial 
representation with an even number of  indices, i.e., 
45 or 210, denoted generically by 0 .45  does not 
possess a cubic invariant. Thus, the corresponding 
superpotential is only a mass term ~M Tr 4}2, which 

,s Supersymmetric SO(10) models with different patterns 
of symmetry breaking have been considered in refs. [ 16, 
171. 
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leads to the vanishing vacuum expectat ion value 
(VEV). This negative result can be corrected by cou- 
pling 45 to other multiplets,  price to be paid being 
that the scale and the little group o f  the VEV is fix- 
ed by this new sector o f  the model.  This problem 
does not occur with 210 where the superpotential  
reads -~M T r ¢  2 + (X/3)Tr 03 leading to a VEV of  or- 
der M/X which breaks, among other possibilities, 
SO(10) into SU(5) × U(1). 

For the second step of  symmetry breaking, SU(5) 
X U(1) -+ SU(3) X SU(2) X U(1), the two natural 
Higgs candidates are 16 and 126, the desired VEV be- 
ing in the 101 part of  16, and in 502 of  126. How- 
ever, the 126 is more attractive, since its coupling to 
quark and lepton supermultiplets will give a large 
Majorana mass to right-handed neutrinos. This is not 
the case using 16, and since the non-renormalization 
properties of  SUSY suppress radiative corrections, 
one would get an unacceptable spectrum for neu- 
trinos. Then, using 210 and 126 + 126 (denoted re- 
spectively by 0, if, ~) ,  the most general cubic (i.e., 
renormalizable) superpotential  is 

W=~MTrO2+~XTrO3+a'~0~+la~d/, (45) 

with indices and gamma matrices omit ted for clarity. 
We need both 126 and 126 chiral multiplets to have 
a superpotential  for these fields and to cancel the 
VEV of  the gauge part of  the potential  [17] .  This 
latter requirement enforces the VEVs of  126 and 126 
to have the same scale and the same little group. 
Solving the minimum equations [18] ,  (~w/~o) = 
(3W/3t~) = 0 for this superpotential ,  leads to two dif- 
ficulties. First ,  the natural solution is to obtain un- 
broken SU(5). The ~0ff coupling has in fact a ten- 
dency to align the VEVs o f  210 (or 45) and 126. The 
second problem is that this superpotential  does not 
possess two actual scales. The VEV of 0 is of  order 
M/~. However, (~W/~) = 0 leads to (0) ~/ . t /~ and 
a tuning of  parameters is necessary. To solve these 
problems, we need non-renormalizable terms like, for 
instance, 

(46) 

To obtain (0) ~M/X = O(1017 GeV) and (if} = O(1016 
GeV), we will have to impose a/(3 < O(10 - 4 )  and la/a 
> O(1017 GeV). Notice that choosing a = 0 leads to 
pseudo-Goldstone multiplets.  Such non-renormalizable 
terms are naturally obtained in supergravity unified 
models [6] .  

7. Conclusions. The anti-SU(5) models, the ordi- 
nary and supersymmetric ones, can be realistic uni- 
fied models with acceptable sin20w and rp.  The or- 
dinary SU(5) X U(1) model is not unified in a simple 
group and hence there is no stable monopole.  The 
supersymmetric SU(5) X U(1) model can be realis- 
tically unified in the SO(10) group. Other SU(N) 
X U(1) models without fractionally charged leptons 
cannot be made realistic. 
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