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Abstract

The Gauss—Bonnet interaction is the only consistent quadratic interaction below the Planck scale in
the Randall-Sundrum compactification. We study various static and inflationary solutions including
this Gauss—Bonnet interactian.2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, Randall and Sundrum (RS) proposed a compactification scheme with
nonvanishing cosmological constant in the bulk [1] which has immediately attracted a
great deal of attention [2-5]. The most simple compactification studied in superstring
models before the RS proposal has been the orbifold compactification [6] in which the
compactified space is flat. On the other hand, the Randall-Sundrum compactification
allows a nonflat compactified space, but the analysis is relatively simple. Because of the
nonflat nature of the bulk between two branes, there exists an exponential warp factor
for metrics going from one brane to the other [1]. This exponential warp factor has been
suggested for a large hierarchy between the Planck 3¢ale- 2.44 x 108 GeV and the
electroweak scale >~ 250 GeV.

Among two branes, let Brane 1 (B1) be the hidden-sector brane and Brane 2 (B2) the
visible sector brane. An exponential warp factor suppresses the soft mass in the visible
brane B2, and it is possible to obtain this small ratio because the Higgs massterm at B2 is a
dimension two operator. Thus, in the RS world, one changes the traditional gauge hierarchy
problem to a problem in geometry. Using the same argument, the nonrenormalizable
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operators are suppressed notMy but by v. Thus one has to make sure that the theory
has a high degree of symmetry to suppress sufficiently the unwanted operators.

Another problem is the problem of inflation. Generally, inflation occurs unless one fine-
tunes the bulk cosmological constant and the brane tensions [2—4]. For the fine-tuned
relations [3-5], there exist static solutions. So far it has not been shown that any of the
static solutions is the— oo limit, not allowing a graceful exit from the inflationary period.

In addition, there is a possibility that the separation between the branes is expanding or
shrinking exponentially. However, this last problem may be understood by introducing a
scalar field in the bulk [7].

The most interesting point of the RS world is the interplay of the bulk and the brane
world. In particular, the bulk cosmological constantand the brane tensioris,(i = 1, 2),
must be relatedk; = k = —kp and k1 > 0. But the expansion rate of the observable
universe is measured by the Hubble parameter which is a functiénaofd k. These
k's are the appropriately defined from the original bulk cosmological congtaiaind the
brane tensionsi, A, at B1 and B22 One interesting point of the RS compactification
is that there may exists a possibility of understanding the old cosmological constant
problem.

Below the Planck scale, the higher order effective interaction in the RS model is known
to be the Gauss—Bonnetinteraction [5]. In contrast to the models without the Gauss—Bonnet
interaction, this model allows solutions with a positie at the visible brane, which is
suitable for a proper expansion in the standard big bang cosmology after the inflationary
period.

In Section 2, the RS compactification with the Gauss—Bonnet term is explored. In
Section 3, the static background solutions with the Gauss—Bonnet interaction are presented.
In Section 4, simple inflationary solutions are given. In Section 5, we present other
possible inflationary solutions. In Section 6, metric perturbation near the static background
geometry is discussed.

2. Gauss—Bonnet interaction

We will neglect the matter interaction, and consider only the gravitational interaction
with cosmological constants in the bulk and at the branes. The space-time dimension is
D = 5. The fifth dimensiont® = y is compactified with anS1/Z> orbifold. The five-
dimensional index i3, N =0, 1, 2, 3,5 and the four-dimensional brane world index is
w,v=0,1,...,3. The fifth dimension variable ranges in the region [@/2]. The S1/Z>
orbifold is used to locate the two branesyat 0 andy = 1/2. The periodicity ofy is 1.

Below the Planck scale, the higher order gravity effects can be added as effective
interaction terms. Since we are neglecting the matter interactions, the possible terms in
the Lagrangian is, up to @2/ M?),

2 Notations fork’s are borrowed from Refs. [3,4].
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whereg, g are the determinants of the metrics in the bulk and the bratfess the
five-dimensional gravitational constant,, and A; are the bulk and brane cosmological
constants, and, 8, y are the effective couplings. We assume that the three-dimensional
space is homogeneous and isotropic, and hence the metric is parametrized bpdb

ds? = —n?(x, y) dr? + a?(z, ¥)8ij dxidx’ + b?(t, y) dy2, (2)

where the Roman charactérsj denote the space indices 1, 2, and 3.

It has been found that there exist solutions consistent with the Randall-Sundrum setup

if the additional interaction is of the Gauss—Bonnet type [5], nanfely,—4a andy = «
are satisfied. In this case, the highederivative termsn””, n"'n’, n"n”, a"”, a""d’,
a"a”, ... 2 are absent in the left-hand side of the Einstein equation. These conditions for
vanishing higher derivative terms are necessary since the right-hand side of the Einstein
equation contains only one power of the Dirac delta function and the higher derivative
terms diverge more rapidly than the delta function at the branes. We find that this result is
highly nontrivial.

However, it can be anticipated from the fact that the Gauss—Bonnet term can be rewritten
as a pseudoscalar quantity’VNoepsry RunCSRop™Y. From the antisymmetric
property of the Riemann tensor, we observe that there ar&ig, (n”)2 and a”n”
terms* in the action which would have given the unwanted fourth order derivatives in
the equations of motion. Thus, the Gauss—Bonnet effective interaction does not contain
highery derivatives.

The Gauss—Bonnetteri= R? — 4Ry y RMN + Rynpo RMNP is a total derivative
in D = 4 space—time, in which case it does not change the Einstein gravity. On the other
hand, forD # 4 it is not a topological quantity any more. Still, it does not contribute to
the massive poles of the spin-2 propagator [8,9]. It means that the metric variations near
the flat space do not give rise to a ghost graviton even with the Gauss—Bonnet term. In
general, a combination of the quadratic curvature terms without the Gauss—Bonnet ratio
leads to ghosts. But it may not be meaningful if the location of the ghost pole in the
graviton propagator is above the Planck scale where the derivative expansion breaks down.
However, the Gauss—Bonnet term possibly excites ghost particles near anti-de Sitter space
in the sense that the sign of the propagator can be flipped [9].

The general curvature squared terms in any space—time dimebRsoam be rewritten
as [10],

3 Here,” denotes the derivative with respectyto

4 Under the metric assumption Eq. (2), the terms includifigire absent in the action. We can see it from the
antisymmetric property of the Riemann tense# y g7 = 95" 7 — - - - and unique non-vanishing Christoffel
symbol containing the first derivative éfwith respect toy is F555 =b'/b.
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aR?+ BRunRMYN + yRynpoRMNTC (3)

_ [(D-2p+4y D-2\(p )
= [ XD —-3) }E+<D—3)(4+y)c

[4(0 — Do + DB +4)/j|R2

4D -1 @

whereE is the Gauss—Bonnet ter? is the square of the Weyl tensor as follows,

E=R2—4RMNRMN +RMNPQRMNPQ, (5)
2

C’=R? - R? R2. 6

MNPO T 55 MN+(D_1)(D_2) (6)

Note that if the metric is conformally flat and &6+ 58 + 4y = 0 in D = 5, the
curvature squared terms appear necessarily in the Gauss—Bonnet combination because the
Weyl tensor vanishes for a conformally flat metnicz, y) = a(z, y) = b(z, y). Then the
coefficient of the resultant Gauss—Bonnet term becai@es- 8)/4.

Forn(t,y) =a(r,y) and 1@ + 58 + 4y = 0, there still exist higher time derivatives
~ (4a + B)(i/a — b/b)? in the action from the curvature squared terms. Thus, to eliminate
higher time derivatives too, in addition to the conditiorw6 58 + 4y = 0, we should
choose the Gauss—Bonnet form in curvature squared terms or conformally flat metric,
n(t,y)=a(r,y) =b(z,y).

Variations of the above action with the Gauss—Bonnet term gives, apart from those for
the brane Lagrangian,

1
\/_g|:RMN - EgMNR - ﬁgMN(RZ — 4RPQRPQ + RSTPQRSTPQ)

+ W(RRMN _4RMPRNP + RMQSPRNQSP) + W(gMNR;P’P - R;M;N)
4(x .

- W(gMNRPQ?P?Q +Run:p' " = Ru" nip = Ry )
2o [0) 0

+W(RMPN pot+Ru’N ;Q;P)j|

- —M_3|:Ab«/—ggMN + A1)/ —g Mg 85838 (»)
(2) (2 g sV 1
+A2 —8 g;Lv8M8N8 y - 5 ’ (7)

where 1 refers to the brane of the hidden world B1 and 2 refers to the visible brane B2.
The left-hand side of the above equation contains the extra term due to the Gauss—Bonnet
term,./—g X mn, in addition to the familiar Einstein tensQf—g Gy . With the metric
givenin Eq. (2), theG yy and X,y are

afa b 3n?[a’ da (d
Goo=3—|—-"+-)|—-——|—+————)]| 8
00 a<a+b) b2|:a +a<a b)i| ®
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Xoo=—5 - + - + - , (12)
M2\ a3n2b  a3b?2  a3b3 as3h3 a3b4 a3b®
Ao Zaab 3a2m; pda’adt’ ba'? @’
Xii = M2\ "% + n°b + n2b2 " p2p3 + n2b3 + n3b2
a2’ _a?n'? a'v _and”  _anad'bl _b%a’?
LA S 2 12 —22
n*b nb n3b3 n3b n3b3 n2b4
_Zdba’n’ B bra'? 3 2([1’)2 +4d’dn’ +4d’l§a’ 3 Za”a’n’
n3b3 n3b3 n2b? n3b2 n2b3 nb4
n//a/z alzn/b/
- 43—, 13
nb* + nb® ) (13)
120 (a3ib?  Ga2b?  da’®  ald'n’  ana’®  aw 14
XSS:W a3n5  adnd +a3n2 + a3 a3 aBab? ) (14)
120 (a3 a%ba’  aa’n’  ba®  a2d  dla’? 15
Xos = M2\ 33 + adn2b  aBnb?  a3h3 432 + a3b? )’ (15)

where’ denotes the derivative with respectyiaand’ denote the derivatives with respect
tor.
The equation of motions Eq. (7) are

Gun +Xun =Tun, (16)

where

2 1
n 8, 8(r—3)
Too=—| A A A
00 M3[ bt b 1+ b 2|
2 1
a b . d=3)
Ti=——=| Ap+ ——2 A1+ ——224
i M3[ b+ b 1+ b 2|
b2
Tss=—-m4p,  Tos=0. 17)
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3. Static solutions

To find static solutions, let us assume that the metric takes the following form,
ds? = e 2Oy, dx” dx” + b3 dy?, (18)

where the length parametgs is a constant. Note that the modified Einstein equation for
the (00) component is identical to tkiE) component in Eq. (16). Thus, the (00);), and
(55) components of Eq. (16) lead to two equations,

30" Ao 2 A1 Ao 1
1- =L s+ 28y -2 19
b2 < w2z ) 230" T 33, <y 2) (19)
6(c")2 2o 2 —Ap
1- S— 20
b2 ( w2 )= e (20)

There exist two solutions of Eg. (20), consistent with the orbifold symmetry —y,

M2 Qo A\ 12\ 712
ai=b0|y|[5<li<l+ b) ﬂ = k+boly|. (21)

3M>5

Let us callo™(or k) ando~(or k_) solutions 4’ and ‘—’ solutions, respectivelyNote
that both positive and negative bulk cosmological constants are possible fdrthe
solutiono ™. If A, =0, we have an AdS space for the ' solution irrespective ofx,
and a Minkowski space for the-" solution [9]. The RS solution is obtained by taking
«a — 0inthe ‘—’ solution.
These solutions exist for:
(i) @ <0andA, < 0 allows onlys —, and
(i) o > 0 allows botho* solutions. Thes* solution is possible for botht;, > 0 and
Ap < 0. Theo ™ solution is possible only for;, < 0. In any case, there exists the
lower limit of « Ay, aAp > —3M°/4.
Comparing our results with that of Randall and Sundrbir (—A,/6M3)Y2, the
“effective” bulk cosmological constant by the Gauss—Bonnet interaction can be defined as

3M° da A
Ad = S <1j: m> = —6M°3k2. (22)

This is because our geometry of the AdS space guarantees a negative bulk cosmological
constant effectively. Fas* to be a real number it should have the negative sign, which is
the same as in the RS case.

Considering the discontinuities at the branes,

|y|’=2<9(y)—9(y—%)) -1, (23)

which comes from the periodicity in direction and the orbifold symmetry, we obtain two
solutions if the following relations among the brane cosmological constants are satisfied
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Fig. 1. Possible solutions for = A,/+/6M3|Ap| as a function ofx4 = 4a A,/ (3M°). The star
point is the RS solution. The four quadrants have different sets of sigasaofl A;, denoted as
(sign of e, sign of Ap).

4o A
F_ + 3 b
AT =—A5 =56k M 1+ 35

M? Aa Ap\ Y2 Aa Ay \ Y2
—voM3| —(1+(1+ 2 14 —2 24
6 [4a( ( +3M5) >< +3M5>} ’ (24)

whereky > 0. The RS solution is obtained by takiag— 0 in the ‘—’ solution. Note that
the visible brane can take a positive cosmological constawill be importantin the later
stage of the evolution of the universe, which will be considered in the following section.
Possible solutions are depicted in Fig. 1 as a function of the Gauss—Bonnet caupling
The vertical axig= 1») is the solution forA; in the visible brane in units of/ 6M3| Ap|,
and the horizontal axié= «4) is defined asdA,/(3M°).
Similarly, we can define the “effective” brane cosmological constants as

Ai L= A;t
O™ 1+ dan,/3M5

Thus we see the RS-like fine tuning conditions again,

=6M3%k; . (25)

T + (b)
Aoy __ Aefie) _ _ [~ e (26)
6M3 6M3 6M3
The Planck constant at B2 (visible sector) is given by [1]
1/2
2 3 —2k+bo| M3 —k+b
Mp?>=M3by | dye io~V‘=k—[1—e +bo]
+

~1/2
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= (12 (14 58 )1/2”1/2[1— eheto], (@7)

The Higgs boson mass parameter at the visible sector is obtained by redefining the Higgs
field such that the kinetic energy term of the Higgs boson takes a standard form [1]. Thus
the Higgs mass parameter is given by

g bo[ M? 4o\ Y2\ V2
m=e 2 imo:moGXp(—?[E<lﬂ:<l+W) (28)

wheremg is the mass given in the fundamental Lagrangian, before redefining the Higgs
field.
For kybo >~ 74, the 4+’ solution gives a needed large mass hierarchy through the warp

factor e‘b70k+ from the input mass paramete¥/j of order 13° GeV, leading to a TeV
scale observable mass. To achieve a sufficient hierarchy, Randall and Sundifmr=set
—Ap/(6M3) ~ M? ~ M% and bo/2 ~ 37/M. These results can be reproduced for our
‘4’ solution with @ = O(1) and A, = 0(1) x M°. For examplek, = M ~ Mp for
Ap/M® =120 —6 anda > 1/4. In this case, the brane cosmological constants are given by
A7 = —AS = —6M*4a — 1]. Thus, we have to séb/2 = 37/M to explain the hierarchy
between the Planck and TeV scale. Note that in this £ade not zero even fort;, = 0 or
a=1/2.

The value o can be smaller or larger using the parametand the bulk cosmological
constantA,. Smallerk,. require longer interval length to explain the hierarchy between
those scales, which results in lighter Kaluza—Klein (KK) modes of the graviton. As the KK
modes must interact with the standard model particles through the gravitational interaction,
the lighter KK mode has the longer lifetime. And sufficiently longer life time of the KK
modes could have an effect on nucleosynthesis. According to Ref. [11], the masses of the
KK modes should be larger than about a few GeV, which correspondsitsy2 < 40 to
be consistent with the nucleosynthesis scenario. Therefore, sthaltbtan M cannot be
consistent with the current cosmology.

On the other hand, a largér. corresponds to a larger curvature and then it would
locate our theory out of perturbative regime. Thus, it isn’t desirable. We will show,
however, in Section 6 that if quadratic curvature terms have the Gauss—Bonnet ratio, at
least the quadratic corrections do not affect linearized 4-dimensional Einstein gravity or
non-relativistic Newtonian gravity regardless of the curvature’s magnitude.

Fork_bg ~ 74, the " solution has the same behavior. The caselgf M° = 120 — 6
anda < 1/4 corresponds to_ = M ~ Mp and A} = — A, = +6M*|1 — 4a|. Then we
have only to sebg/2 = 37/ M to explain the hierarchy between two scales too. Of course,
we also have the freedom to make the smaller or larger thar depending on the
parameters and Ap.

The small warp factor [1] makes it possible to generate a TeV scale mass from
the fundamental parameter @f(M). But these TeV scale masses also appear in the
other mass parameters of the effective operators. In particular, the operators leading to
proton decay are also parametrized by a TeV scale mass. Therefore, one has to suppress



304 J.E. Kim et al. / Nuclear Physics B 582 (2000) 296—-312

sufficiently the low dimensional proton decay operators such that it is sufficiently long-
lived (z, > 10°? years), allowing operators with > 14 only.

In non-Gauss—Bonnet cases satisfying the conditian4£68 + 4y = 0, the RS type
solution is still valid except for the substitutiom 4> 8« + 8 in Eq. (21) because the RS
metric can be redefined to be conformally flat.

4. Inflationary solutions

For inflationary solutions we impose an ansatz,

n=f(), a=g@)f), b = bo, (29)
wherebg is a constant. Now adding th@0) and(ii) equations in Eq. (16), we obtain
g ! Ao f//
-2(=2)|1- —|=0. 30
()7 @0

Since f” necessarily gives rise to a delta function we should tg@ke) = 0. So we define
(¢/g) = Hp = constant. Then thé5) equation gives

Ho\*_ L/)Zi} 21[(@)2_<£)2ir_ﬂ
[( f) (f ) T2\ ) T\F) b2] TemE D
After little algebra, we obtain

(f /)2 _ g2 k2 f2
) =H{+kf2 (32)
bo
where thek? is defined in Eq. (22). For the-” case witha = 0, we arrive at the solution
given in Ref. [4],k2 = —A,/6M3. Note thatk? contains the cases of both positive and
negative cosmological constants in the baitid thek? can take both positive and negative
signs. Inflationary solutions were obtained for a flat bulk geometry and for an AdS bulk
geometry [2,3,17], which can solve the hierarchy problem in the static limit. In our case,
as one can see below, inflationary solutions exist also for a positive bulk cosmological
constant.

Forki > 0, the solution consistent with the orbifold symmetry is

Hp .
f= k—i) sinh(—k-boly| + co). (33)

The (00) or (ii) equations of Eq. (16) just give a boundary condition for the solution. Using
the relation given in Eq. (23), one can find that the imposed conditions determine the extra
dimension scalég and the integration constaty as follows,

1
k1,+ = Fk+ coth(co), ko 4+ =tk+ COth(— ékbo + Co) (34)

where thek; are defined in Eq. (25). Here, the solutions are valid onlykfok |k1 4| <
lkz,+| in caseco > Fkbo andks < |kz,+| < |ky,+| in caseco < Fkbo. One can also check
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easily that the; tends to those of Ref. [4] in the limit @f — O in the lower case (i.e., the
‘—’ solution). In general, inflation occurs if parametersA,, A1, and A2 do not satisfy
the two relations implied by Eq. (24). From the above relationsthe(kz +) diverges as
ko, +(k1,+) — :FkiCOU'(%kbo).

Then the metric is

2
ds? = (?) Sint?(—kboly| + co)[—dr? + €078, d’ dx /] + b3dy%.  (35)
+

To obtain the RS static solution with the warp factor in the visible brane, we should take
Ho — 0 andcp — +o0 while keeping the ratigHoe™) /(2k+) — 1 fixed. Then we obtain
the fine tuning conditiotk1 + = —k2 + = Fk+ from Eq. (25), which is the same result
as Eq. (24). Here one can see the possibility of the warp factored brane with the positive
cosmological constant again.

After 4-dimensional coordinate transformation at a giveto make the 4-dimensional
metric be in the form o = —dr? + 215, dx? dx/ [4], we get the Hubble parameter
expressed in terms of the cosmological constant and the energy deHgiy, =

V/ (kvis£)% — k% Here k3, , = k2 for the static solutions and the two parameters
corresponding to thet’ and ‘—’ solutions at the visible branéy;s +, are given by

(A3 + puis)

kyis+ = , 36
" 6MB3/1+ (da Ay 3M5) (36)
WhereAiE > pvis- Thus the Hubble parameter at B2 is given by [5]
2 Pvis(Pvis + 2A§) +pvis Pvis
Hyis 4 = 5 5= = . (37)
36M°(1+4aAp/3M®)  3M3,\/1+ 4o Ap/3M° 245

The second equation above is derived with the use of Egs. (24) and (27)e)Yith 0, we
obtain the previous static solution. But with, = A, < 0 where the original RS solution
sits, there exists a possibility thagis(24; + pvis) < 0 at a sufficiently low temperature,
and hence it is difficult to obtain a real Hubble parameter [12—16]. But with a positive
A;, there does not exist such a problem. This is possible for-eusolution for« > 0.
Therefore, with the+’ solution we can obtain a plausible Friedmann—Robertson—Walker
universe after inflation ends.

In Eq. (37), the,o\fis term gives a correction to the conventional Friedmann equation but
in the limit A — oo andaA,/M® — 0 we recover the standard 4-D general relativistic
result. The modified Friedmann equation leads to the modified inflation condition,

a_ -1 (%<1+2’)V+‘S)+3”V‘5(1+ ’if>>>o (38)
a  3M3,\/1+4aAy/3M>\ 2 A3 2 A3

or

(39)

e < Pvisl:A;+2Pvisi|
VIS — 5 | . |

3 A-Zi_ + pvis
where thep,is and pyis satisfy the fluid equationyis + 3H (pvis + pvis) = 0.
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Now let us consider the case that the only matter in the 4-D universe is a self interacting
scalar field, inflatop. Then thepyis and pyis are given bypyis = %‘q’)z + V(¢) and pyis =
362 — V(¢), respectively, and the Eq. (39) becomes [19]

> +2V(9)

845

$* = V(@) + [ (5% — 2v<¢))} <0, (40)
which reduces tg? < V wheng? 42V <« AZ. Assuming that the inflaton field rolls down
to a true vacuum very slowly, the energy density is dominated by the poté&htal the
inflaton field evolution is strongly damped, which implies

H?~ 4 [1+ VJ, (41)
3M3,\/1+4aA,/3M° 243
. v/
~_ 42
¢ =g (42)

where we usez*’ to denote equality within the slow-roll approximation [18]. Our brane
physics modifies also the e-folding number as follows;

(43)

i 1 i v v
/ M3,\/1+4 da A/3M° ; 4 24,

For alargeA; and smalkxA,/M> we obtain the standard e-folding formula again.

Next, let us consider the corrections to the scalar and tensor density perturbations.
The scalar density perturbation can be related to the curvature perturbasionniform
density hypersurfaces when modes re-enter the Hubble radius during the matter dominated
era[18,19],

_Hie
;

where the scalar field fluctuation at Hubble crossikg=(a H) are given by(s¢?) ~
(H /2m)?. Thus, using the slow-roll conditions Egs. (41) and (42), the amplitude of scalar
perturbations becomes

AS: _<g2>s é‘ s (44)

(45)

b= () Vi o)
ST 75w2\ M2, /1+ dan,j3m5) V2 24
So the amplitude of scalar perturbations is increased relative to the standard result. Of
course, we recover the standard one for a Ia’['g“eand smallozAb/M5.

The amplitude of tensor (gravitational wave) perturbation at Hubble crossing is given
by [18,19]

, 1 ( H\?
A2=_—— (=
5072\ Mp;

In the slow-roll approximation, this yields

k=aH

(46)

k=aH
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(47)

4= sso gy | 2
171502\ M4, /1 + 4o A,/3M5 2A7 iean
which is increased by brane effects, but with a smaller factor than in the case the scalar
perturbation. This tends to the standard formigs— oo anda.A,/M° — 0.
In the previous section, we discussed the phenomenologically favored valagga,
A anda. The result wask, = M ~ Mp, Ap/M° =120 — 6, A = 6M*/4a — 1| and
a > 1/4. I1fwe takeA, =0 ora = 1/2, we could recover the existing results in cosmology.

5. Other solutions
If we take a non-separable ansatz for the metric tensor,

n(t,y)=a(t,y)= b(z,y) =k+bota(t, y), (48)

Tf(y)+go
the solution is

& — —dr? + §;; dx’ dx/ + (kibot)? dy?
[k+7 sinh(k+bo|y| + co) + gol?

wherebg andcg are constants and determined by the boundary wall’s conditions.

k
co= coshl<ﬁ),
k+

+k k
kibo = 2| costt =22£ ) — coshl( T2LE ) |, (50)
ki ki

Actually this has the same form as in Ref. [4] except that the cosmological constants are,
as before, given by Eq. (22) and Eqg. (25). The constamémains as a free parameter and
its physical role is discussed in [4]. Settigg = 0, we get the solution given in Ref. [3]
andbg becomes independent of
If 160 + 58 + 4y = 0 is satisfied but the Gauss—Bonnet conditions are not, the
inflationary solutions in given Eq. (35) (with a separable metric) and Eg. (49) (with a
nonseparable metric) are still valid except the substitution-48« + g in our solutions
Eqg. (22), etc., even though there exist higher time derivatives in the equations of motion.
Taking a different ansatz;(z, y) = a(z, y) = b(z, y), which is conformally flat, the
solution is given by

(49)

—dt2+8;; dx’ dx/ + dy?
[— (K2 —k2) "’ + ki 51yl + o]
1+ k%) T +Hkiglyl+co
wherecq is a constant. This metric describes inflation in both the spatial dimensions and the
extra dimension. The's are given by Eqgs. (22) and (25) as before. For non-Gauss—Bonnet

case with 16 + 58 + 4y = 0, the solution is still valid also except for the substitution
4o — 8 + B because it is conformally flat.

ds? = (51)
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6. Metric perturbation near the RS background geometry

It is also of interest to study the gravitational interaction with the RS background. In
fact, Randall and Sundrum demonstrated that the Newton’s force law does not imply
only four non-compact dimensions in the presence of a non-factorizable background
geometry [20—26]. The example they studied is the case sifigle 3-brane embedded
in non-compact five dimension. In this section, let us reconsider the case with the Gauss—
Bonnet interaction.

The graviton is a linearized tensor fluctuation near the background geometry,

Ny +huv(st)v (52)

where thex indicates the coordinate for the 4-dimensional space embedded in the
5-dimensional bulk. Since we are interested in the 4-dimensional graviton only, which
is the longitudinal component of the metric fluctuation, we /sgf = hs, = hss = 0.
Inserting Eq. (52) into Eq. (7) and taking only the linear terma,jp, we obtain

g,uv — eﬁZki‘v‘

1 Aok?\ , 8ak?
Guw+Xw=|—-5|1- oy + 8(y) sgn(y)ay

2 M? M?
2
_ 54 kel 1_% Barks
> e IYEAREY? 5(y)
6akd ) 5ak?
_8k:|:8(y) 1— MZ +4kj: Z—W h,w(x,y) (53)
and
1
T ==273 [Ap+ ATS) | (x, y)
2uk? Adak?
— [6ki <1_ MZt) — Bk+5(y) <1— M—;ﬂhw(x, ), (54)

where the underlined quantities denote the linear parf,jnin the full expressions and,

is n*¥9,0,. Here we sebg = 1 for simplicity. Eq. (54) is obtained by the use of Eq. (22)

and Eq. (24). Here we choose the traceless transverse gauge conditiops= 4}, = 0
[20-26]. Under this gauge condition all components:pf satisfy the same equation of
motion, and hence we will omit thev indices below. Here we note again that in the Gauss—
Bonnet case the unwanted higher derivative terms disappear in the linear approximation as
in the background case.

To perform a Kaluza—Klein reduction down to 4-dimension and get an understand-
ing of all modes that appear in the assumed 4D effective theory, we separate the vari-
ables; h(x, y) = ¥(y)€P*, where thep* is a 4-dimensional momentum. Since the
4-dimensional mass? of the KK excitation isp? = —m?, Eq. (53)= Eq. (54) leads to

1 dakiN 5 .o dak?
(2 (1- 22z (1 22

k+

Ao 120k?
_2k¢8(y)<— 2 sgn(y)ay +1— MZ*)}#@)
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2 2
_ ’“_eZkiy[l_ daky | Boks
2

T 6(y>}/x(y>. (55)

Note that the above equation remains the same regardless of the sign of the brane’s
cosmological constant.

In the bulk, we can easily check that the Gauss—Bonnet interaction does not modify the
equation of motion because all terms have the exactly same common(faetéwk? / M?)
neglecting the Dirac delta functions. Therefore, we obth# same eigenfunctions and
eigenvalues as in the RS’s solutiojd—-23] except for the definition of.. On the
other hand, the Dirac delta functions gives the boundary condition, so the Gauss—Bonnet
interaction modifies only the boundary condition in the order of magnitudec®f M>.

Thus, one can imagine that there exists a possibility that the massless mode has not only
an exponentially decaying component but also an exponentially growing one at order
ak? /M?. Note that the coefficient of the growing mode is exactly zero in the absence
of the higher curvature terms in the action [20-23]. We have found, however, that the
exponentially growing mode does not appear even in the presence of the Gauss—Bonnet
interaction.

To follow the RS process, let us make change of variablessgn(y) (&= — 1)/ k.,

V() = v (=2 andh(x, z) = h(x, y)e=1"1/2. Then, Eq. (55) reads

1., 152 ke s (2B qanna — 3\ g
I:—é 7 m“r? (Z)<A—ki gr(Z) z_7>j|w(Z)
m2 B ~
- 7[1+ A—]&(S(z)}w(z), (56)

whereA = 1— 4ak? /M?, B = 8ak2 /M? andC = 1— 120k% /M2. Note thatA = B+ C.

For m? = 0, the eigenfunctions in the bulk satisfying the orbifold symmetry are
(kslz| + D%/ ks (= exp(—3kx|y))/k+) and (ks|z| + D¥?/ ks (= exp(3k=ly])/ k).
Therefore, the solution is a linear combination of them

(kplzl + 1732 (kylz| +1)5/?
a +b .
k+ k+

To satisfy the boundary condition at= 0, let us insert Eq. (57) into Eg. (56) and assemble
the coefficients of the Dirac delta functions. Then, we obtain

(57)

a(—A+B+C)+b(A—B+C)=0, (58)

whereA = B+ C. Thus,b =0, i.e., the massless graviton is confined on the brane and the
Newton'’s force law on the brane holds go®¢en under the non-compact extra dimension
Particularly, we note that the result is not changed even though the brane’s cosmological
constant is negative.

As

L N P T S R
hu(x,y) oce” 2 Vi (2)eP* ocem =P,

the fluctuation near the background metric can be written down as
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80 =& 20 (i + € €PY), (59)

where the superscript 0 denotes massless fluctuation ag thea polarization tensor of

the graviton wave function and from which we can see that the massless mode fluctuates
only in the longitudinal direction to the brane. Besides, from Eq. (55) we can get the
4-dimensional linearized Einstein equation in the Minkowski space,

—%eweﬁ’x —0, (60)
which is of course true also after 4-dimensional coordinate transformation at aygteen
make the 4-dimensional background metric be in the foﬂfml Ny dx” dx”. Note that
the above result is not affected by the Gauss—Bonnet correction

We usually worry about the instability of anti-de Sitter space due to excitations of ghost
particles [9]. In our case, we still have such a problem since the sign of the kinetic term for
thek, background is opposite to that of the case without the Gauss—Bonnet term, viz.

2
—% (1 -~ %) (€110 + 02)hyuy = i% 1+ % (Mg + 82)hy,. (61)
However, the equation of motion itself describes the same behavior of gravity localization
on the hidden sector brane (B1) because the brane cosmological constant contributing to
energy momentum tensor changes its sign as well. Thus, we have no ghost problem as far
as the brane cosmological constant is concerned as energy density. But we cannot regard
the brane with negative cosmological constant at 0 as our universe due to the later
cosmological problem that was discussed in Section 4.

Form? > 0, the solutions for the above equation of motion in the bulk are

a(lzl + 1/ks) 2 (m(1zl + 1/k) + b(lz] + 1/ke) 2Ya(m(2l + 1/k)),  (62)

which is the same solution as in the RS case except for the definition. dthe imposed
boundary condition at = O fixes the ratio of: andb,
a 43 1— 4ok /M?+ 2am?/M?

- = . 63
b wm? 1—120k? /M2 + am?2/M? (63)

In this case, the Gauss—Bonnet interaction modifies Newton’s non-relativistic gravitational
potentialthrough the KK stateas follows,

iy - 2 0g2 2/1722
mimsa dm m mimo€ ™" [1—120kq /M*+ am*/M
V~Gn G

+ | ==
r [T TR 1— 4ak? /M2 + 20m2/ M2
0
mimo b4 1—12051(2/M2 2
~Gy [1 2( = | (64)
r (kxr)? \ 1—daks /M

The above result is obtained through the RS technique given in Ref. [20-23]. Of course,
the potential given above is not ruled out yet [16].
For the case of two branes and bulk with/ Z, symmetry, the Eq. (55) is modified into
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1 dakidN 5 .o dak?
2 (1= 222z (1 2

Aok 120k

1 4ok 120k?
+ 2k <y - 5) <—Tzi sgn(y)dy +1— T;)}/f(y)

m?2 4ak? Sk 8aky 1

where the sgty) = |y|' =20 (y) —0(y — %)) — 1 and we can check the solution Eq. (57)
with b = 0 satisfies the above equation (65) regardless of the length scale by use of the

k. ~
relation 2, = e~ 2 Y1y (z) and Eq. (23). Therefore, from Eq. (60) the non-relativistic
Newtonian gravity could be restored at the visible sector brane for sufficiently small
interval lengthbg < r.

7. Conclusion

We studied various static and inflationary solutions in the Randall-Sundrum framework
with the Gauss—Bonnet term added to the standard Hilbert action. It has been argued that
in this RS framework the Gauss—Bonnet term is the only acceptable curvature square
term. Then there exist additional coupling the coefficient of the Gauss—Bonnet term.
Depending on various values of there exist static solutions and also the inflationary
solutions. In particular, there exist solutions for a positive visible sector tensjofor
a > 0, which makes it possible to transit to a standard Big Bang cosmology after inflation.
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