Reduction-Controlled Viologen in Bisolvent as an Environmentally Stable n-Type Dopant for Carbon Nanotubes

Soo Min Kim,† Jin Ho Jang,† Ki Kang Kim,† Hyeon Ki Park,† Jung Jun Bae,† Woo Jong Yu,† Il Ha Lee,† Gunn Kim,† Duong Dinh Loc,† Un Jeong Kim,† Eun-Hong Lee,‡ Hyeon-Jin Shin,§ Jae-Young Choi,§ and Young Hee Lee*,†

†Department of Nanoscience and Nanotechnology, Department of Physics, and Center for Nanotubes and Nanostructured Composites, Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746, Korea

‡Frontier Research Laboratory, Samsung Advanced Institute of Technology, P.O. Box 111 Suwon, 440-600, Republic of Korea

§Display Device & Material Laboratory, Analytical Engineering Center, Samsung Advanced Institute of Technology, P.O. Box 111, Suwon 440-600, Korea
Figure S1: Optical absorption spectra of the BV-doped CNTs with different concentrations. The main peak originating from V^0 appeared near 405 nm. This peak position was not altered with different concentrations, but the intensity increased with increasing concentrations. This confirms that the separated V^0 in toluene from the reduced viologen did not contain any other charged viologens such as V^{1+} and V^{2+}. Thus, the separation yield of extracting only V^0 was high.
Figure S2: I-V characteristics of 5 mM benzyl viologen, methyl viologen and ethyl viologen-treated TFTs. The large off-currents were observed in the cases of MV and EV, whereas relatively small off-current was observed in the case of BV. From a device point of view, BV is a good n-type dopant with high on-current and low off-current.